OFFSET
1,2
COMMENTS
Conjecture: if n > 1, then a(n) is the number of labeled digraphs D (allowing self-loops) with n vertices such that D|D' and D'|D are (strongly) connected (see preliminaries of Broere et al.). - Lorenzo Sauras Altuzarra, Sep 17 2022
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..50
I. Broere, W. Imrich, R. Kalinowski, and M. Pilsniak, Asymmetric colorings of products of graphs and digraphs, Discrete Applied Mathematics 266 (p. 56-64), 2019.
F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68. (Annotated scanned copy)
FORMULA
a(n) = c(n,n) where c(0,1) = 1, c(0,m) = 0, c(n,m) = 2^(n*m) - Sum_{1 <= k <= n, 0 <= j <= m, k < n or j < m} C(n-1, k-1) * C(m, j) * 2^((n-k)*(m-j)) * c(k, j). - Sean A. Irvine, May 11 2016
MATHEMATICA
c[0, 1] = c[1, 0] = 1; c[0, _] = c[_, 0] = 0; c[n_, m_] := c[n, m] = 2^(n*m) - Sum[If[k < n || j < m, Binomial[n - 1, k - 1]*Binomial[m, j]* 2^((n - k)*(m - j))*c[k, j], 0], {k, 1, n}, {j, 0, m}];
a[n_] := c[n, n];
Array[a, 12] (* Jean-François Alcover, Sep 03 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More precise definition by Pavel Irzhavski, Jul 09 2013
More terms from Sean A. Irvine, May 11 2016
STATUS
approved