login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186722
a(n) = numerator of Sum_{k=1..p-1} 1/k^2 for p the n-th prime.
1
1, 5, 205, 5369, 1968329, 240505109, 822968714749, 238820721143261, 354019312583809, 10383930672892966877209, 8745363341445960333910369, 33729537728506506466441425661, 46252969210499754415427421586309, 11115284554577186575391010113969347, 20577813589884143264711540636313749803
OFFSET
1,2
MAPLE
f3:=proc(n) local p;
p:=ithprime(n);
numer(add(1/i^2, i=1..p-1));
end proc;
[seq(f3(n), n=1..20)];
MATHEMATICA
Table[Numerator[HarmonicNumber[Prime[n]-1, 2]], {n, 1, 15}] (* Jean-François Alcover, Nov 29 2017 *)
PROG
(PARI) a(n) = my(p=prime(n)); numerator(sum(k=1, p-1, 1/k^2)); \\ Michel Marcus, Apr 05 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 21 2012
STATUS
approved