The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125551 As p runs through primes >= 5, sequence gives { numerator of Sum_{k=1..p-1} 1/k^2 } / p. 2
 41, 767, 178939, 18500393, 48409924397, 12569511639119, 15392144025383, 358066574927343685421, 282108494885353559158399, 911609127797473147741660153, 1128121200256091571107985892349 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS This is an integer by a theorem of Waring and Wolstenholme. LINKS R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057, 2011 MAPLE f1:=proc(n) local p; p:=ithprime(n); (1/p)*numer(add(1/i^2, i=1..p-1)); end proc; [seq(f1(n), n=3..20)]; MATHEMATICA a = {}; Do[AppendTo[a, (1/(Prime[x]))Numerator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]], {x, 3, 50}]; a Table[Sum[1/k^2, {k, p-1}]/p, {p, Prime[Range[3, 20]]}]//Numerator (* Harvey P. Dale, Nov 20 2019 *) CROSSREFS Cf. A061002, A034602, A186720, A186722. Sequence in context: A246642 A167737 A268993 * A087856 A010957 A299332 Adjacent sequences:  A125548 A125549 A125550 * A125552 A125553 A125554 KEYWORD nonn AUTHOR Artur Jasinski, Jan 03 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 01:07 EDT 2021. Contains 346429 sequences. (Running on oeis4.)