Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Nov 29 2017 12:26:55
%S 1,5,205,5369,1968329,240505109,822968714749,238820721143261,
%T 354019312583809,10383930672892966877209,8745363341445960333910369,
%U 33729537728506506466441425661,46252969210499754415427421586309,11115284554577186575391010113969347,20577813589884143264711540636313749803
%N a(n) = numerator of Sum_{k=1..p-1} 1/k^2 for p the n-th prime.
%H R. Mestrovic, <a href="http://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011)</a>, arXiv:1111.3057 [math.NT], 2011.
%p f3:=proc(n) local p;
%p p:=ithprime(n);
%p numer(add(1/i^2,i=1..p-1));
%p end proc;
%p [seq(f3(n),n=1..20)];
%t Table[Numerator[HarmonicNumber[Prime[n]-1, 2]], {n, 1, 15}] (* _Jean-François Alcover_, Nov 29 2017 *)
%o (PARI) a(n) = my(p=prime(n)); numerator(sum(k=1, p-1, 1/k^2)); \\ _Michel Marcus_, Apr 05 2015
%Y Cf. A125551, A186720, A061002.
%K nonn
%O 1,2
%A _N. J. A. Sloane_, Jan 21 2012