login
A060486
Tricoverings of an n-set.
9
1, 0, 0, 5, 205, 11301, 904580, 101173251, 15207243828, 2975725761202, 738628553556470, 227636079973503479, 85554823285296622543, 38621481302086460057613, 20669385794052533823555309, 12966707189875262685801947906, 9441485712482676603570079314728
OFFSET
0,4
COMMENTS
A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.
LINKS
FORMULA
E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
EXAMPLE
There are 1 4-block tricovering, 3 5-block tricoverings and 1 6-block tricovering of a 3-set (cf. A060487), so a(3)=5.
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Mar 20 2001
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Dec 15 2018
STATUS
approved