login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A060090
Number of ordered bicoverings of an unlabeled n-set.
13
1, 0, 3, 23, 290, 4298, 79143, 1702923, 42299820, 1188147639, 37276597020, 1291633545897, 48995506718702, 2019395409175529, 89864601931874318, 4294295828157319651, 219321170795303112118, 11922219151375200468886
OFFSET
0,3
LINKS
FORMULA
E.g.f. for ordered k-block bicoverings of an unlabeled n-set is exp(-x-x^2/2*y/(1-y)) * Sum_{k>=0} 1/(1-y)^binomial(k,2)*x^k/k!.
EXAMPLE
There are 23 ordered bicoverings of an unlabeled 3-set, 7 3-block bicoverings:
1 ( { 3 }, { 1, 2 }, { 1, 2, 3 } )
2 ( { 3 }, { 1, 2, 3 }, { 1, 2 } )
3 ( { 2, 3 }, { 1 }, { 1, 2, 3 } )
4 ( { 2, 3 }, { 1, 3 }, { 1, 2 } )
5 ( { 2, 3 }, { 1, 2, 3 }, { 1 } )
6 ( { 1, 2, 3 }, { 3 }, { 1, 2 } )
7 ( { 1, 2, 3 }, { 2, 3 }, { 1 } )
and 16 4-block bicoverings:
1 ( { 3 }, { 2 }, { 1 }, { 1, 2, 3 } )
2 ( { 3 }, { 2 }, { 1, 3 }, { 1, 2 } )
3 ( { 3 }, { 2 }, { 1, 2 }, { 1, 3 } )
4 ( { 3 }, { 2 }, { 1, 2, 3 }, { 1 } )
5 ( { 3 }, { 2, 3 }, { 1 }, { 1, 2 } )
6 ( { 3 }, { 2, 3 }, { 1, 2 }, { 1 } )
7 ( { 3 }, { 1, 2 }, { 2 }, { 1, 3 } )
8 ( { 3 }, { 1, 2 }, { 2, 3 }, { 1 } )
9 ( { 3 }, { 1, 2, 3 }, { 2 }, { 1 } )
10 ( { 2, 3 }, { 3 }, { 1 }, { 1, 2 } )
11 ( { 2, 3 }, { 3 }, { 1, 2 }, { 1 } )
12 ( { 2, 3 }, { 1 }, { 3 }, { 1, 2 } )
13 ( { 2, 3 }, { 1 }, { 1, 3 }, { 2 } )
14 ( { 2, 3 }, { 1, 3 }, { 2 }, { 1 } )
15 ( { 2, 3 }, { 1, 3 }, { 1 }, { 2 } )
16 ( { 1, 2, 3 }, { 3 }, { 2 }, { 1 } )
PROG
(PARI) seq(n)={my(m=3*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x - x^2*y/(2*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 2)*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020
CROSSREFS
Row n=2 of A331571.
Row sums of A060092.
Sequence in context: A006555 A357349 A363137 * A052842 A333957 A343849
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Feb 25 2001
STATUS
approved