login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245242
a(n) = Sum_{k=0..n} binomial(n^2 - k^2, n*k - k^2).
3
1, 2, 5, 40, 987, 73026, 15656191, 9146092572, 15579632823935, 71399036100619112, 916371430754269894286, 33098484899485154272997507, 3182514246669584511131232330210, 875352526298195795986890973534420721, 650999500319874632196352991280266092913655
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(n^2, n*k) * C(n*k, k^2) / C(n^2, k^2).
a(n) = Sum_{k=0..n} ((n+k)*(n-k))! / ( (n*(n-k))! * (k*(n-k))! ).
a(n) = Sum_{k=0..n} (n^2 - k^2)! / ( (n^2 - n*k)! * (n*k - k^2)! ).
Limit n->infinity a(n)^(1/n^2) = r^(-(1-r)^2/(2*r)) = 1.65459846190854391888257390278..., where r = 0.37667447497728449846981481128313080857... (see A245259) is the root of the equation r^(2*r-1) = (r+1)^(2*r). - Vaclav Kotesovec, Jul 15 2014
EXAMPLE
We can illustrate the terms as the row sums of triangle A245243;
triangle A245243(n,k) = C(n^2 - k^2, n*k - k^2) begins:
1;
1, 1;
1, 3, 1;
1, 28, 10, 1;
1, 455, 495, 35, 1;
1, 10626, 54264, 8008, 126, 1;
1, 324632, 10518300, 4686825, 125970, 462, 1;
1, 12271512, 3190187286, 5586853480, 354817320, 1961256, 1716, 1; ...
MATHEMATICA
Table[Sum[Binomial[n^2-k^2, n*k-k^2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 15 2014 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n^2 - k^2, n*k - k^2))}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n, binomial(n^2, n*k)*binomial(n*k, k^2)/binomial(n^2, k^2))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 14 2014
STATUS
approved