login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245242 a(n) = Sum_{k=0..n} binomial(n^2 - k^2, n*k - k^2). 3
1, 2, 5, 40, 987, 73026, 15656191, 9146092572, 15579632823935, 71399036100619112, 916371430754269894286, 33098484899485154272997507, 3182514246669584511131232330210, 875352526298195795986890973534420721, 650999500319874632196352991280266092913655 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..67

FORMULA

a(n) = Sum_{k=0..n} C(n^2, n*k) * C(n*k, k^2) / C(n^2, k^2).

a(n) = Sum_{k=0..n} ((n+k)*(n-k))! / ( (n*(n-k))! * (k*(n-k))! ).

a(n) = Sum_{k=0..n} (n^2 - k^2)! / ( (n^2 - n*k)! * (n*k - k^2)! ).

Limit n->infinity a(n)^(1/n^2) = r^(-(1-r)^2/(2*r)) = 1.65459846190854391888257390278..., where r = 0.37667447497728449846981481128313080857... (see A245259) is the root of the equation r^(2*r-1) = (r+1)^(2*r). - Vaclav Kotesovec, Jul 15 2014

EXAMPLE

We can illustrate the terms as the row sums of triangle A245243;

triangle A245243(n,k) = C(n^2 - k^2, n*k - k^2) begins:

1;

1, 1;

1, 3, 1;

1, 28, 10, 1;

1, 455, 495, 35, 1;

1, 10626, 54264, 8008, 126, 1;

1, 324632, 10518300, 4686825, 125970, 462, 1;

1, 12271512, 3190187286, 5586853480, 354817320, 1961256, 1716, 1; ...

MATHEMATICA

Table[Sum[Binomial[n^2-k^2, n*k-k^2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 15 2014 *)

PROG

(PARI) {a(n)=sum(k=0, n, binomial(n^2 - k^2, n*k - k^2))}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n)=sum(k=0, n, binomial(n^2, n*k)*binomial(n*k, k^2)/binomial(n^2, k^2))}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A245243, A227403, A245259.

Sequence in context: A012801 A183910 A162035 * A004096 A156152 A106885

Adjacent sequences:  A245239 A245240 A245241 * A245243 A245244 A245245

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 14 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 01:05 EST 2020. Contains 330995 sequences. (Running on oeis4.)