The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245242 a(n) = Sum_{k=0..n} binomial(n^2 - k^2, n*k - k^2). 3
 1, 2, 5, 40, 987, 73026, 15656191, 9146092572, 15579632823935, 71399036100619112, 916371430754269894286, 33098484899485154272997507, 3182514246669584511131232330210, 875352526298195795986890973534420721, 650999500319874632196352991280266092913655 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Paul D. Hanna, Table of n, a(n) for n = 0..67 FORMULA a(n) = Sum_{k=0..n} C(n^2, n*k) * C(n*k, k^2) / C(n^2, k^2). a(n) = Sum_{k=0..n} ((n+k)*(n-k))! / ( (n*(n-k))! * (k*(n-k))! ). a(n) = Sum_{k=0..n} (n^2 - k^2)! / ( (n^2 - n*k)! * (n*k - k^2)! ). Limit n->infinity a(n)^(1/n^2) = r^(-(1-r)^2/(2*r)) = 1.65459846190854391888257390278..., where r = 0.37667447497728449846981481128313080857... (see A245259) is the root of the equation r^(2*r-1) = (r+1)^(2*r). - Vaclav Kotesovec, Jul 15 2014 EXAMPLE We can illustrate the terms as the row sums of triangle A245243; triangle A245243(n,k) = C(n^2 - k^2, n*k - k^2) begins: 1; 1, 1; 1, 3, 1; 1, 28, 10, 1; 1, 455, 495, 35, 1; 1, 10626, 54264, 8008, 126, 1; 1, 324632, 10518300, 4686825, 125970, 462, 1; 1, 12271512, 3190187286, 5586853480, 354817320, 1961256, 1716, 1; ... MATHEMATICA Table[Sum[Binomial[n^2-k^2, n*k-k^2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 15 2014 *) PROG (PARI) {a(n)=sum(k=0, n, binomial(n^2 - k^2, n*k - k^2))} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n)=sum(k=0, n, binomial(n^2, n*k)*binomial(n*k, k^2)/binomial(n^2, k^2))} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A245243, A227403, A245259. Sequence in context: A012801 A183910 A162035 * A004096 A156152 A106885 Adjacent sequences:  A245239 A245240 A245241 * A245243 A245244 A245245 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 14 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 01:05 EST 2020. Contains 330995 sequences. (Running on oeis4.)