login
A338425
Numbers k such that the points [prime(k), prime(k+1)], [prime(k+2), prime(k+3)] and [prime(k+4), prime(k+5)] are collinear.
1
3, 4, 25, 27, 41, 54, 103, 124, 140, 147, 149, 151, 186, 247, 271, 306, 345, 347, 354, 377, 398, 430, 464, 473, 504, 577, 578, 670, 682, 709, 767, 771, 787, 821, 823, 825, 827, 870, 1037, 1086, 1124, 1157, 1165, 1167, 1276, 1319, 1388, 1401, 1557, 1600, 1602, 1607, 1722, 1724, 1740, 1828, 1830
OFFSET
1,1
COMMENTS
Numbers k such that A031131(k)*A031131(k+3)=A031131(k+1)*A031131(k+2).
LINKS
EXAMPLE
a(3)=25 is in the sequence because the six primes starting with prime(25)=97 are 97, 101, 103, 107, 109, 113, and the points (97,101), (103,107) and (109,113) are collinear, all being on the line y=x+4.
MAPLE
P:= [seq(ithprime(i), i=1..2005)]:
select(n -> (P[n+2]-P[n])*(P[n+5]-P[n+1]) = (P[n+3] - P[n+1])*(P[n+4]-P[n]), [$1..2000]);
CROSSREFS
Cf. A031131.
Sequence in context: A093600 A128778 A362165 * A304210 A245244 A009391
KEYWORD
nonn
AUTHOR
Robert Israel, Oct 25 2020
STATUS
approved