The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093600 Numerator of Sum_{1<=k<=n, gcd(k,n)=1} 1/k. 4
 1, 1, 3, 4, 25, 6, 49, 176, 621, 100, 7381, 552, 86021, 11662, 18075, 91072, 2436559, 133542, 14274301, 5431600, 9484587, 2764366, 19093197, 61931424, 399698125, 281538452, 8770427199, 1513702904, 315404588903, 323507400, 9304682830147 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The divisibility properties of this sequence are given by Leudesdorf's theorem. Problem: are there numbers n > 1 such that n^4 | a(n)? Let b(n) be the numerator of Sum_{1<=k<=n, gcd(k,n)=1} 1/k^2. Conjecture: if, for some e > 0, n^e | a(n), then n^(e-1) | b(n). It appears that, for any odd number n, n^e | a(n) if and only if n^(e-1) | b(n). - Thomas Ordowski, Aug 12 2019 REFERENCES G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1971, page 100. LINKS Seiichi Manyama, Table of n, a(n) for n = 1..2310 Emre Alkan, Variations on Wolstenholme's Theorem, Amer. Math. Monthly, Vol. 101, No. 10 (Dec. 1994), 1001-1004. Eric Weisstein's World of Mathematics, Leudesdorf Theorem FORMULA G.f. A(x) (for fractions) satisfies: A(x) = -log(1 - x)/(1 - x) - Sum_{k>=2} A(x^k)/k. - Ilya Gutkovskiy, Mar 31 2020 MATHEMATICA Table[s=0; Do[If[GCD[i, n]==1, s=s+1/i], {i, n}]; Numerator[s], {n, 1, 35}] PROG (PARI) for (n=1, 40, print1(numerator(sum(k=1, n, if (gcd(k, n)==1, 1/k))), ", ")) \\ Seiichi Manyama, Aug 11 2017 (MAGMA) [Numerator(&+[1/k:k in [1..n]|Gcd(k, n) eq 1]):n in [1..31]]; // Marius A. Burtea, Aug 14 2019 CROSSREFS Cf. A069220 (denominator of this sum), A001008 (numerator of the n-th harmonic number). Sequence in context: A256830 A065900 A065809 * A128778 A338425 A304210 Adjacent sequences:  A093597 A093598 A093599 * A093601 A093602 A093603 KEYWORD nonn,frac AUTHOR T. D. Noe, Apr 03 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 16:18 EDT 2021. Contains 346447 sequences. (Running on oeis4.)