|
|
A093602
|
|
Decimal expansion of Pi/sqrt(3) = sqrt(2*zeta(2)).
|
|
23
|
|
|
1, 8, 1, 3, 7, 9, 9, 3, 6, 4, 2, 3, 4, 2, 1, 7, 8, 5, 0, 5, 9, 4, 0, 7, 8, 2, 5, 7, 6, 4, 2, 1, 5, 5, 7, 3, 2, 2, 8, 4, 0, 6, 6, 2, 4, 8, 0, 9, 2, 7, 4, 0, 5, 7, 5, 5, 6, 9, 8, 8, 4, 9, 3, 5, 3, 8, 8, 1, 2, 3, 1, 8, 1, 1, 2, 6, 3, 5, 3, 8, 8, 3, 6, 8, 4, 1, 2, 4, 9, 8, 8, 2, 1, 2, 0, 6, 0, 1, 6, 8, 8, 5, 6, 2, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Volume of a cube with edge length 1 rotated about a space diagonal. See MathWorld Cube page. - Francis Wolinski, Mar 10 2019
Volume of a cone with unit radius and 60-degree opening angle, and so height sqrt(3). Equivalently, the volume of the cone formed by rotating a 30-60-90 degree triangle with unit short leg about the long leg. - Christoph B. Kassir, Sep 17 2022
|
|
LINKS
|
Eric Weisstein's World of Mathematics, Cube
|
|
FORMULA
|
Equals (3/2)*Integral_{x=0..oo} 1/(1+x+x^2) dx. - Bruno Berselli, Jul 23 2013
Equals Sum_{n >= 0} (1/(6*n+1) - 4/(6*n+2) - 5/(6*n+3) - 1/(6*n+4) + 4/(6*n+5) + 5/(6*n+6)). - Mats Granvik, Sep 23 2013
Equals (1/2) * Sum_{n >= 0} (14*n + 11)*(-1/3)^n/((4*n + 1)*(4*n + 3)*binomial(4*n,2*n)). For more series representations of this type see the Bala link. - Peter Bala, Feb 04 2015
Equals 3*Sum_{n >= 1} 1/( (3*n - 1)*(3*n - 2) ).
Equals 2 - 6*Sum_{n >= 1} 1/( (3*n - 1)*(3*n + 1)*(3*n + 2) ).
Equals 5!*Sum_{n >= 1} 1/( (3*n - 1)*(3*n - 2)*(3*n + 2)*(3*n + 4) ).
Equals 3*( 1 - 2*Sum_{n >= 1} 1/(9*n^2 - 1) ).
Equals 1 + Sum_{n >=1 } (-1)^(n+1)*(6*n + 1)/(n*(n + 1)*(3*n + 1)*(3*n - 2)).
Equals (27/2)*Sum_{n >= 1} (2*n + 1)/( (3*n - 1)*(3*n + 1)*(3*n + 2)*(3*n + 4) ).
Equals 3*Integral_{x = 0..1} 1/(1 + x + x^2) dx.
Equals 3*Integral_{x = 0..1} (1 + x)/(1 - x + x^2) dx.
Equals 3*Integral_{x = 0..oo} cosh(x)/cosh(3*x) dx. (End)
Equals Integral_{x = 0..oo} log(1+x^3)/x^3 dx. - Amiram Eldar, Aug 20 2020
For any integer k, Pi/sqrt(3) = Sum_{n >= 0} (1/(n + k + 1/3) - 1/(n - k + 2/3)) = (1/3)*Sum_{n >= 0} (1/(n - k + 1/6) - 1/(n + k + 5/6)).
Equals (3/2)*Sum_{n >= 0} 1/((2*n + 1)*binomial(2*n, n)). (End)
|
|
EXAMPLE
|
Pi/sqrt(3) = 1.8137993642342178505940782576421557322840662480927405755...
|
|
MATHEMATICA
|
RealDigits[Pi/Sqrt[3], 10, 120][[1]] (* Harvey P. Dale, Mar 04 2012 *)
|
|
PROG
|
(PARI) default(realprecision, 20080); x=Pi*sqrt(3)/3; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b093602.txt", n, " ", d)); \\ Harry J. Smith, Jun 19 2009
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/Sqrt(3); // G. C. Greubel, Mar 10 2019
(Sage) numerical_approx(pi/sqrt(3), digits=100) # G. C. Greubel, Mar 10 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|