login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093602 Decimal expansion of Pi/sqrt(3) = sqrt(2*zeta(2)). 23
1, 8, 1, 3, 7, 9, 9, 3, 6, 4, 2, 3, 4, 2, 1, 7, 8, 5, 0, 5, 9, 4, 0, 7, 8, 2, 5, 7, 6, 4, 2, 1, 5, 5, 7, 3, 2, 2, 8, 4, 0, 6, 6, 2, 4, 8, 0, 9, 2, 7, 4, 0, 5, 7, 5, 5, 6, 9, 8, 8, 4, 9, 3, 5, 3, 8, 8, 1, 2, 3, 1, 8, 1, 1, 2, 6, 3, 5, 3, 8, 8, 3, 6, 8, 4, 1, 2, 4, 9, 8, 8, 2, 1, 2, 0, 6, 0, 1, 6, 8, 8, 5, 6, 2, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Volume of a cube with edge length 1 rotated about a space diagonal. See MathWorld Cube page. - Francis Wolinski, Mar 10 2019
Volume of a cone with unit radius and 60-degree opening angle, and so height sqrt(3). Equivalently, the volume of the cone formed by rotating a 30-60-90 degree triangle with unit short leg about the long leg. - Christoph B. Kassir, Sep 17 2022
LINKS
Jean Dolbeault, Ari Laptev and Michael Loss, Lieb-Thirring inequalities with improved constants, Vol. 10, No. 4 (2008), pp. 1121-1126, preprint, arXiv:0708.1165 [math.AP], 2007.
Eric Weisstein's World of Mathematics, No-Three-in-a-Line-Problem
Eric Weisstein's World of Mathematics, Cube
FORMULA
Equals Integral_{x=0..oo} x^(1/3)/(1+x^2) dx. - Jean-François Alcover, May 24 2013
Equals (3/2)*Integral_{x=0..oo} 1/(1+x+x^2) dx. - Bruno Berselli, Jul 23 2013
Equals Sum_{n >= 0} (1/(6*n+1) - 4/(6*n+2) - 5/(6*n+3) - 1/(6*n+4) + 4/(6*n+5) + 5/(6*n+6)). - Mats Granvik, Sep 23 2013
Equals (1/2) * Sum_{n >= 0} (14*n + 11)*(-1/3)^n/((4*n + 1)*(4*n + 3)*binomial(4*n,2*n)). For more series representations of this type see the Bala link. - Peter Bala, Feb 04 2015
From Peter Bala, Nov 02 2019: (Start)
Equals 3*Sum_{n >= 1} 1/( (3*n - 1)*(3*n - 2) ).
Equals 2 - 6*Sum_{n >= 1} 1/( (3*n - 1)*(3*n + 1)*(3*n + 2) ).
Equals 5!*Sum_{n >= 1} 1/( (3*n - 1)*(3*n - 2)*(3*n + 2)*(3*n + 4) ).
Equals 3*( 1 - 2*Sum_{n >= 1} 1/(9*n^2 - 1) ).
Equals 1 + Sum_{n >=1 } (-1)^(n+1)*(6*n + 1)/(n*(n + 1)*(3*n + 1)*(3*n - 2)).
Equals (27/2)*Sum_{n >= 1} (2*n + 1)/( (3*n - 1)*(3*n + 1)*(3*n + 2)*(3*n + 4) ).
Equals 3*Integral_{x = 0..1} 1/(1 + x + x^2) dx.
Equals 3*Integral_{x = 0..1} (1 + x)/(1 - x + x^2) dx.
Equals 3*Integral_{x = 0..oo} cosh(x)/cosh(3*x) dx. (End)
Equals Integral_{x = 0..oo} log(1+x^3)/x^3 dx. - Amiram Eldar, Aug 20 2020
Equals (27*S - 36)/24, where S = A248682. - Peter Luschny, Jul 22 2022
From Peter Bala, Nov 09 2023: (Start)
For any integer k, Pi/sqrt(3) = Sum_{n >= 0} (1/(n + k + 1/3) - 1/(n - k + 2/3)) = (1/3)*Sum_{n >= 0} (1/(n - k + 1/6) - 1/(n + k + 5/6)).
Equals (3/2)*Sum_{n >= 0} 1/((2*n + 1)*binomial(2*n, n)). (End)
EXAMPLE
Pi/sqrt(3) = 1.8137993642342178505940782576421557322840662480927405755...
MATHEMATICA
RealDigits[Pi/Sqrt[3], 10, 120][[1]] (* Harvey P. Dale, Mar 04 2012 *)
PROG
(PARI) default(realprecision, 20080); x=Pi*sqrt(3)/3; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b093602.txt", n, " ", d)); \\ Harry J. Smith, Jun 19 2009
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/Sqrt(3); // G. C. Greubel, Mar 10 2019
(Sage) numerical_approx(pi/sqrt(3), digits=100) # G. C. Greubel, Mar 10 2019
CROSSREFS
Continued fraction expansion is A132116. - Jonathan Vos Post, Aug 10 2007
Equals twice A093766.
Cf. A343235 (using the reciprocal), A248682.
Sequence in context: A092515 A193032 A127454 * A011469 A140457 A358286
KEYWORD
easy,nonn,cons,changed
AUTHOR
Lekraj Beedassy, May 14 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 10:02 EST 2023. Contains 367539 sequences. (Running on oeis4.)