OFFSET
0,1
COMMENTS
A minimal dissection. The number d/2 = sqrt(Pi/sqrt(3))/2 = sqrt(Pi)/(2*3^(1/4)) gives the length of the shortest cut that bisects a unit-sided equilateral triangle. From A093602, it is plain that d^2 < 2, i.e., (d/2)^2 < 1/2 = square of the bisecting line segment parallel to the triangle's side. d/2 actually is the arc subtending the angle Pi/3 about the center of the circle with radius D/2, where D^2 = 3/d^2. Since Pi/3~1, d~D (see A093604).
REFERENCES
P. Halmos, Problems for Mathematicians Young and Old, Math. Assoc. of Amer. Washington DC 1991.
C. W. Triggs, Mathematical Quickies, Dover NY 1985.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Scott Carr, Bisecting an arbitrary triangular cake (with a straight cut of shortest length)
FORMULA
This is sqrt(Pi)/(2*3^(1/4)).
EXAMPLE
0.67338684354429918030954011877308216677216770182700......
MATHEMATICA
RealDigits[Sqrt[Pi]/(2*3^(1/4)), 10, 50][[1]] (* G. C. Greubel, Jan 13 2017 *)
PROG
(PARI) sqrt(Pi/sqrt(3))/2 \\ G. C. Greubel, Jan 13 2017
CROSSREFS
KEYWORD
AUTHOR
Lekraj Beedassy, May 14 2004
STATUS
approved