|
|
A092515
|
|
Decimal expansion of e^(1/6).
|
|
3
|
|
|
1, 1, 8, 1, 3, 6, 0, 4, 1, 2, 8, 6, 5, 6, 4, 5, 9, 8, 0, 3, 0, 5, 1, 1, 2, 1, 5, 2, 5, 0, 7, 1, 8, 4, 3, 2, 7, 8, 3, 0, 1, 8, 9, 3, 1, 0, 8, 3, 8, 9, 6, 3, 7, 9, 7, 8, 5, 6, 1, 9, 4, 2, 8, 0, 2, 2, 6, 4, 5, 5, 2, 8, 5, 5, 9, 2, 2, 9, 7, 4, 5, 6, 6, 2, 3, 6, 6, 9, 7, 3, 8, 5, 0, 4, 4, 2, 7, 6, 3, 1, 9, 1, 7, 7, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
e^(1/6) maximizes the value of x^(c/(x^6)) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. - A.H.M. Smeets, Aug 16 2018
|
|
LINKS
|
Muniru A Asiru, Table of n, a(n) for n = 1..2000
|
|
FORMULA
|
Equals lim_{x->0} (sinh(x)/x)^(1/x^2). - Amiram Eldar, Jul 04 2022
|
|
EXAMPLE
|
1.18136041286564598030511215250718432783018931083896...
|
|
MAPLE
|
evalf(exp(1/6)); # Muniru A Asiru, Aug 16 2018
|
|
MATHEMATICA
|
RealDigits[E^(1/6), 10, 120][[1]] (* Harvey P. Dale, Sep 13 2011 *)
|
|
PROG
|
(PARI) exp(1/6) \\ Michel Marcus, Aug 16 2018
|
|
CROSSREFS
|
Cf. A001113, A019774, A092727 (reciprocal).
Sequence in context: A196932 A199278 A011391 * A193032 A127454 A093602
Adjacent sequences: A092512 A092513 A092514 * A092516 A092517 A092518
|
|
KEYWORD
|
cons,nonn
|
|
AUTHOR
|
Mohammad K. Azarian, Apr 05 2004
|
|
STATUS
|
approved
|
|
|
|