

A092514


Decimal expansion of e^(1/5).


3



1, 2, 2, 1, 4, 0, 2, 7, 5, 8, 1, 6, 0, 1, 6, 9, 8, 3, 3, 9, 2, 1, 0, 7, 1, 9, 9, 4, 6, 3, 9, 6, 7, 4, 1, 7, 0, 3, 0, 7, 5, 8, 0, 9, 4, 1, 5, 2, 0, 5, 0, 3, 6, 4, 1, 2, 7, 3, 4, 2, 5, 0, 9, 8, 5, 9, 9, 2, 0, 6, 2, 3, 3, 0, 8, 3, 6, 3, 7, 8, 1, 6, 2, 4, 2, 2, 8, 8, 7, 4, 4, 0, 1, 3, 3, 7, 2, 4, 7, 3, 9, 6, 9, 0, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

e^(1/5) maximizes the value of x^(c/(x^5)) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0.  A.H.M. Smeets, Aug 16 2018


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000


FORMULA

e^(1/5) = 5^(2*5)/21355775*(1 + Sum_{n>=1} (1 + n^7/5 + n/5)/(5^n*n!)).  Alexander R. Povolotsky, Sep 13 2011
e^(1/5) = 1/2*( 1 +(6 +(11 +(16 +...)/15)/10)/5 ) = 1 +(1 +(1 +(1 +...)/15)/10)/5.  Rok Cestnik, Jan 19 2017


EXAMPLE

1.22140275816


MAPLE

evalf(exp(1/5)); # Muniru A Asiru, Aug 16 2018


MATHEMATICA

RealDigits[Surd[E, 5], 10, 120][[1]] (* Harvey P. Dale, Aug 12 2016 *)


PROG

(PARI) exp(1/5) \\ Michel Marcus, Aug 16 2018
(MAGMA) Exp(1/5); // Vincenzo Librandi, Aug 17 2018


CROSSREFS

Cf. A001113, A019774.
Sequence in context: A061531 A214722 A071430 * A106641 A191785 A320500
Adjacent sequences: A092511 A092512 A092513 * A092515 A092516 A092517


KEYWORD

cons,nonn


AUTHOR

Mohammad K. Azarian, Apr 05 2004


STATUS

approved



