login
A192346
Constant term of the reduction (by x^2->x+1) of polynomial p(n,x) identified in Comments.
2
1, 0, 3, 4, 25, 68, 275, 904, 3297, 11400, 40499, 141900, 500697, 1760396, 6200675, 21820432, 76823425, 270407696, 951914403, 3350807700, 11795463001, 41521535700, 146162319603, 514512119704, 1811159622625, 6375545788568, 22442862753875
OFFSET
1,3
COMMENTS
To define the polynomials p(n,x), let d=sqrt(x+2); then p(n,x)=(1/2)((x+d)^n+(x-d)^n). These are similar to polynomials at A161516.
For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.
FORMULA
Conjecture: a(n) = 2*a(n-1)+6*a(n-2)-2*a(n-3)-a(n-4). G.f.: -x*(x+1)*(3*x-1) / (x^4+2*x^3-6*x^2-2*x+1). [Colin Barker, Jan 17 2013]
EXAMPLE
The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=2+x+x^2 -> 3+2x
p(3,x)=6x+3x^2+x^3 -> 4+11x.
From these, we read
A192346=(1,0,3,4,...) and A192347=(1,1,2,11...)
MATHEMATICA
q[x_] := x + 1; d = Sqrt[x + 2];
p[n_, x_] := ((x + d)^n + (x - d)^n )/ 2
(* similar to polynomials defined at A161516 *)
Table[Expand[p[n, x]], {n, 0, 4}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
(* A192346 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
(* A192347 *)
CROSSREFS
Sequence in context: A245244 A009391 A212696 * A335739 A055348 A004206
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 28 2011
STATUS
approved