login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A192349
Coefficient of x in the reduction (by x^2->x+1) of polynomial p(n,x) identified in Comments.
2
0, 1, 2, 14, 40, 180, 616, 2456, 8960, 34384, 128160, 485728, 1823360, 6882368, 25896064, 97614720, 367575040, 1384954112, 5216465408, 19651804672, 74025216000, 278859191296, 1050447030272, 3957059508224, 14906157629440, 56151566438400
OFFSET
1,3
COMMENTS
To define the polynomials p(n,x), let d=sqrt(x+3); then p(n,x)=(1/2)((x+d)^n+(x-d)^n). These are similar to polynomials at A161516. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.
FORMULA
Conjecture: a(n) = 2*a(n-1)+8*a(n-2)-4*a(n-3)-4*a(n-4). G.f.: x^2*(2*x^2+1) / (4*x^4+4*x^3-8*x^2-2*x+1). [Colin Barker, Jan 17 2013]
EXAMPLE
The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=3+x+x^2 -> 4+2x
p(3,x)=9x+3x^2+x^3 -> 4+14x.
From these, we read
A192348=(1,0,3,4,...) and A192349=(0,1,2,14...)
MATHEMATICA
(See A192348.)
CROSSREFS
Sequence in context: A216528 A329735 A290124 * A230801 A231081 A364218
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 28 2011
STATUS
approved