login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192348
Constant term of the reduction (by x^2->x+1) of polynomial p(n,x) identified in Comments.
2
1, 0, 4, 4, 36, 88, 432, 1408, 5776, 20736, 80320, 297792, 1132096, 4242304, 16028928, 60276736, 227287296, 855703552, 3224482816, 12144337920, 45752574976, 172339107840, 649223532544, 2445572276224, 9212566081536, 34703459811328
OFFSET
1,3
COMMENTS
To define the polynomials p(n,x), let d=sqrt(x+3); then p(n,x)=(1/2)((x+d)^n+(x-d)^n). These are similar to polynomials at A161516.
For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.
FORMULA
Conjecture: a(n) = 2*a(n-1)+8*a(n-2)-4*a(n-3)-4*a(n-4). G.f.: -x*(4*x^2+2*x-1) / (4*x^4+4*x^3-8*x^2-2*x+1). [Colin Barker, Jan 17 2013]
EXAMPLE
The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=3+x+x^2 -> 4+2x
p(3,x)=9x+3x^2+x^3 -> 4+14x.
From these, we read
A192348=(1,0,3,4,...) and A192349=(0,1,2,14...)
MATHEMATICA
q[x_] := x + 1; d = Sqrt[x + 3];
p[n_, x_] := ((x + d)^n + (x - d)^n )/
2 (* similar to polynomials defined at A161516 *)
Table[Expand[p[n, x]], {n, 0, 4}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
(* A192348 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
(* A192349 *)
CROSSREFS
Sequence in context: A335183 A129357 A100303 * A111882 A321313 A070959
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 28 2011
STATUS
approved