login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335183
T(n,k) = Sum_{j=1..n} 2^j*binomial(2*n-2*j, n-j)*binomial(n+j, n)*binomial(j, k), triangle read by rows (n >= 0 and 0 <= k <= n).
0
0, 4, 4, 36, 60, 24, 288, 688, 560, 160, 2240, 7080, 8760, 5040, 1120, 17304, 68712, 114576, 99456, 44352, 8064, 133672, 642824, 1351840, 1572480, 1055040, 384384, 59136, 1034880, 5864640, 14912064, 21778560, 19536000, 10695168, 3294720, 439296
OFFSET
0,2
COMMENTS
This was the original version of A126936.
FORMULA
T(n,n) = A069722(n+1) for n >= 0.
T(n,k) = A126936(n,k) = A067001(n,n-k) for n >= k >= 1.
T(n,0) = A126936(n,0) - binomial(2*n, n) = A067001(n,n) - A000984(n) for n >= 0.
Bivariate o.g.f.: Sum_{n,k >= 0} T(n,k)*x^n*y^k = -1/sqrt(1 - 4*x) + sqrt((1 + y)/(1 - 8*x*(1 + y))/(y + sqrt(1 - 8*x*(1 + y)))).
EXAMPLE
Table T(n,k) (with rows n >= 0 and columns k = 0..n) begins as follows:
0;
4, 4;
36, 60, 24;
288, 688, 560, 160;
2240, 7080, 8760, 5040, 1120;
17304, 68712, 114576, 99456, 44352, 8064;
133672, 642824, 1351840, 1572480, 1055040, 384384, 59136;
...
MATHEMATICA
t[l_, m_] := Sum[2^k*Binomial[2*m-2*k, m-k]*Binomial[m+k, m]*Binomial[k, l], {k, 1, m}]; Table[t[l, m], {m, 0, 11}, {l, 0, m}] // Flatten (* Jean-François Alcover, Jan 09 2014_ from the original version of A126936 *)
PROG
(PARI) T(n, k) = sum(j=1, n, 2^j*binomial(2*n-2*j, n-j)*binomial(n+j, n)*binomial(j, k));
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(T(n, k), ", "); ); print(); ); }
CROSSREFS
Cf. A000984, A067001, A069722 (main diagonal), A126936.
Sequence in context: A249807 A180064 A105350 * A129357 A100303 A192348
KEYWORD
nonn,tabl
AUTHOR
Petros Hadjicostas, May 25 2020
STATUS
approved