login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067001
Triangle T(n,k) = d(n-k,n), 0 <= k <= n, where d(l,m) = Sum_{k=l..m} 2^k * binomial(2*m-2*k, m-k) * binomial(m+k, m) * binomial(k, l).
8
1, 4, 6, 24, 60, 42, 160, 560, 688, 308, 1120, 5040, 8760, 7080, 2310, 8064, 44352, 99456, 114576, 68712, 17556, 59136, 384384, 1055040, 1572480, 1351840, 642824, 134596, 439296, 3294720, 10695168, 19536000, 21778560, 14912064, 5864640, 1038312
OFFSET
0,2
COMMENTS
For an explanation on how this triangular array is related to the Boros-Moll polynomial P_n(x) and the theory in Comtet (1967), see my comments in A223549. For example, the bivariate o.g.f. below follows from the theory in Comtet (1967). - Petros Hadjicostas, May 24 2020
LINKS
Tewodros Amdeberhan and Victor H. Moll, A formula for a quartic integral: a survey of old proofs and some new ones, arXiv:0707.2118 [math.CA], 2007.
George Boros and Victor H. Moll, An integral hidden in Gradshteyn and Ryzhik, Journal of Computational and Applied Mathematics, 106(2) (1999), 361-368.
William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, arXiv:0806.4333 [math.CO], 2009.
William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, Mathematics of Computation, 78(268) (2009), 2269-2282.
Louis Comtet, Fonctions génératrices et calcul de certaines intégrales, Publikacije Elektrotechnickog faculteta - Serija Matematika i Fizika, No. 181/196 (1967), 77-87.
V. H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317.
V. H. Moll, Combinatorial sequences arising from a rational integral, Onl. J. Anal. Combin. no 2 (2007) #4.
FORMULA
From Petros Hadjicostas, May 24 2020: (Start)
T(n,k) = 2^(2*n)*A223549(n,n-k)/A223550(n,n-k).
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = sqrt((1 + y)/(1 - 8*x*(1 + y))/(1 + y*sqrt(1 - 8*x*(1 + y)))). (End)
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) starts:
1;
4, 6;
24, 60, 42;
160, 560, 688, 308;
1120, 5040, 8760, 7080, 2310;
...
MAPLE
d := proc(l, m) local k; add(2^k*binomial(2*m-2*k, m-k)*binomial(m+k, m)*binomial(k, l), k=l..m); end:
T:= (n, k)-> d(n-k, n):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
T[n_, k_] := SeriesCoefficient[Sqrt[(1+y)/(1 - 8x (1+y))/(1 + y Sqrt[1 - 8x (1+y)])], {x, 0, n}, {y, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 05 2020 *)
PROG
(PARI) d(l, m) = sum(kk=l, m, 2^kk*binomial(2*m-2*kk, m-kk)*binomial(m+kk, m)*binomial(kk, l));
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(d(n-k, n), ", "); ); print(); ); } \\ Michel Marcus, Jul 18 2015
CROSSREFS
Column k=0 gives A059304.
Row sums give A002458.
Main diagonal gives A004982.
Sequence in context: A283185 A034458 A240290 * A057343 A377117 A343466
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 16 2002
STATUS
approved