OFFSET
0,2
COMMENTS
The integral N(a;n) = Integral_{x=0..infinity} 1/(x^4 + 2*a*x^2 + 1)^(n+1) has a polynomial representation P_n(a) = 2^(n + 3/2) * (a+1)^(n + 1/2) * N(a;n) / Pi (known as the Boros-Moll polynomial). The table contains the coefficients T(n,l) of P_n(a) = 2^(-2*n)*Sum_{l=0..n} T(n,l)*a^l in row n and column l (with n >= 0 and 0 <= l <= n).
LINKS
Tewodros Amdeberhan and Victor H. Moll, A formula for a quartic integral: a survey of old proofs and some new ones, arXiv:0707.2118 [math.CA], 2007.
George Boros and Victor H. Moll, An integral hidden in Gradshteyn and Ryzhik, Journal of Computational and Applied Mathematics, 106(2) (1999), 361-368.
William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, arXiv:0806.4333 [math.CO], 2009.
William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, Mathematics of Computation, 78(268) (2009), 2269-2282.
Victor H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317.
Victor H. Moll, Combinatorial sequences arising from a rational integral, Onl. J. Anal. Combin., no 2 (2007), #4.
FORMULA
EXAMPLE
The table T(n,l) (with rows n >= 0 and columns l = 0..n) starts:
1;
6, 4;
42, 60, 24;
308, 688, 560, 160;
2310, 7080, 8760, 5040, 1120;
17556, 68712, 114576, 99456, 44352, 8064;
...
For n = 2, N(a;2) = Integral_{x=0..oo} dx/(x^4 + 2*a*x + 1)^3 = 2^(-2*2)*(Sum_{l=0..2} T(2,l)*a^l) * Pi/(2^(2 + 3/2) * (a + 1)^(2 + 1/2) = (42 + 60*a + 24*a^2) * Pi/(32 * (2*(a+1))^(5/2)) for a > -1. - Petros Hadjicostas, May 25 2020
MAPLE
A126936 := proc(m, l)
add(2^k*binomial(2*m-2*k, m-k)*binomial(m+k, m)*binomial(k, l), k=l..m):
end:
seq(seq(A126936(m, l), l=0..m), m=0..12); # R. J. Mathar, May 25 2020
MATHEMATICA
t[m_, l_] := Sum[2^k*Binomial[2*m-2*k, m-k]*Binomial[m+k, m]*Binomial[k, l], {k, l, m}]; Table[t[m, l], {m, 0, 11}, {l, 0, m}] // Flatten (* Jean-François Alcover, Jan 09 2014, after Maple, adapted May 2020 *)
CROSSREFS
KEYWORD
AUTHOR
R. J. Mathar, Mar 17 2007
EXTENSIONS
Corrected by Petros Hadjicostas, May 23 2020
STATUS
approved