login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333813
a(n) = 2^(1 + floor(n*log_2(3))) - (3^n + 1).
0
0, 0, 6, 4, 46, 12, 294, 1908, 1630, 13084, 6486, 84996, 517134, 502828, 3605638, 2428308, 24062142, 5077564, 149450422, 985222180, 808182894, 6719515980, 2978678758, 43295774644, 267326277406, 252223018332, 1856180682774, 1170495537220
OFFSET
0,3
COMMENTS
For integers X, Y, let a(n) = (X^(t+1) - 1) / (X - 1) - Y^n, where t = floor(n*log_X(Y)) . This sequence is for X = 2, Y = 3.
FORMULA
a(n) = 2^(1 + floor(n*log_2(3))) - (3^n + 1).
EXAMPLE
a(0) = 2^(1 + floor(0*log_2(3))) - (3^0 + 1) = 0; a(4) = 2^(1 + floor(4*log_2(3))) - (3^4 + 1) = 46.
MATHEMATICA
Table[2^(1+Floor[n Log2[3]])-(3^n+1), {n, 0, 30}] (* Harvey P. Dale, Sep 04 2023 *)
CROSSREFS
Examples for integers X = Y from {2, 3, 4, 5, 6, 7, 8, 9, 10} are A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275. Examples for X = 2, Y = 4 are A024036; for X = 2, Y = 8, A024088; and for X = 3, Y = 9, A191681.
Sequence in context: A114330 A098657 A126936 * A327370 A375789 A260716
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Apr 06 2020
STATUS
approved