login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333816
Number of ways to write n as the difference of two hexagonal numbers.
6
1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 2, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 2, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 2, 1, 1, 0, 1, 1, 1, 1
OFFSET
1,45
LINKS
FORMULA
G.f.: Sum_{k>=1} x^(k*(2*k - 1)) / (1 - x^(4*k)).
G.f.: Sum_{i>=0} Sum_{j>=i} Product_{k=i..j} x^(4*k + 1).
MATHEMATICA
nmax = 92; CoefficientList[Series[Sum[x^(k (2 k - 1))/(1 - x^(4 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
nmax = 92; Rest[CoefficientList[Series[Sum[x^(k*(2*k - 1))/(1 - x^(4*k)), {k, 1, 1 + Sqrt[nmax/2]}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Apr 19 2020 *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 06 2020
STATUS
approved