login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333818
G.f.: Sum_{k>=1} x^(k*(3*k - 2)) / (1 - x^(6*k)).
6
1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1
OFFSET
1
COMMENTS
Number of ways to write n as the difference of two octagonal numbers.
a(n) = 2 if n = 133, 175, 176, 217, 224, 259, 272, 280, 301, 320, 343, 368, 385, 400, ... a(n) = 3 if n = 560, 637, 896, 935, ... a(n) = 4 if n = 1729, 2240, 2275, ... - R. J. Mathar, Oct 08 2020 [modified by Ilya Gutkovskiy, Oct 09 2020]
FORMULA
G.f.: Sum_{i>=0} Sum_{j>=i} Product_{k=i..j} x^(6*k + 1).
EXAMPLE
a(1729) = 4 with representations 1729 = 1825-96 = 2465-736 = 5985-4256 = 249985-248256. - R. J. Mathar, Oct 08 2020
MAPLE
A333818 := proc(n)
local a, hi, hiO, lo, loO;
a := 0 ;
for hi from 1 do
hiO := A000567(hi) ;
for lo from hi-1 to 1 by -1 do
loO := A000567(lo) ;
if lo = hi-1 and hiO-loO > n then
return a;
end if;
if hiO-loO = n then
a := a+1 ;
elif hiO-loO > n then
break;
end if ;
end do:
end do:
end proc:
seq( A333818(n), n=1..300) ; # R. J. Mathar, Oct 08 2020
MATHEMATICA
nmax = 95; CoefficientList[Series[Sum[x^(k (3 k - 2))/(1 - x^(6 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 06 2020
STATUS
approved