OFFSET
0,1
LINKS
T. D. Noe, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, Prime Distance
FORMULA
Conjecture: S(n) = Sum_{k=1..n} a(k) is asymptotic to C*n*log(n) with C=0.29...... - Benoit Cloitre, Aug 11 2002
Comment from Giorgio Balzarotti, Sep 18 2005: by means of the Prime Number Theorem is possible to derive the following inequality: c1*n*log(n) < S(n) < c2*n*log(n), where c1 = 1/4 and c2 = 3/8 (for n > 130). For a more accurate estimation of the values for c1 and c2, it necessary to know the number of twin primes with respect to the total number of primes.
EXAMPLE
Closest primes to 0,1,2,3,4 are 2,2,2,3,3.
MAPLE
A051699 := proc(n) if isprime(n) then 0; elif n<= 2 then 2-n ; else min(nextprime(n)-n, n-prevprime(n)) ; end if ; end proc; # R. J. Mathar, Nov 01 2009
MATHEMATICA
FormatSequence[ Table[Min[Abs[n-If[n<2, 2, Prime[{#, #+1}&[PrimePi[n]]]]]], {n, 0, 101}], 51699, 0, Name->"Distance to closest prime." ]
(* From version 6 on: *) a[_?PrimeQ] = 0; a[n_] := Min[NextPrime[n]-n, n-NextPrime[n, -1]]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Apr 05 2012 *)
PROG
(PARI) a(n)=if(n<1, 2*(n==0), vecmin(vector(n, k, abs(n-prime(k)))))
(PARI) a(n)=if(n<1, 2*(n==0), min(nextprime(n)-n, n-precprime(n)))
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from James A. Sellers
STATUS
approved