login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^(1 + floor(n*log_2(3))) - (3^n + 1).
0

%I #8 Sep 04 2023 12:21:42

%S 0,0,6,4,46,12,294,1908,1630,13084,6486,84996,517134,502828,3605638,

%T 2428308,24062142,5077564,149450422,985222180,808182894,6719515980,

%U 2978678758,43295774644,267326277406,252223018332,1856180682774,1170495537220

%N a(n) = 2^(1 + floor(n*log_2(3))) - (3^n + 1).

%C For integers X, Y, let a(n) = (X^(t+1) - 1) / (X - 1) - Y^n, where t = floor(n*log_X(Y)) . This sequence is for X = 2, Y = 3.

%F a(n) = 2^(1 + floor(n*log_2(3))) - (3^n + 1).

%e a(0) = 2^(1 + floor(0*log_2(3))) - (3^0 + 1) = 0; a(4) = 2^(1 + floor(4*log_2(3))) - (3^4 + 1) = 46.

%t Table[2^(1+Floor[n Log2[3]])-(3^n+1),{n,0,30}] (* _Harvey P. Dale_, Sep 04 2023 *)

%Y Cf. A000225, A024036.

%Y Examples for integers X = Y from {2, 3, 4, 5, 6, 7, 8, 9, 10} are A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275. Examples for X = 2, Y = 4 are A024036; for X = 2, Y = 8, A024088; and for X = 3, Y = 9, A191681.

%K nonn

%O 0,3

%A _Ctibor O. Zizka_, Apr 06 2020