login
A260716
a(n) = number of iterations of A234742 needed when starting from A091209(n) before a fixed point is reached.
6
6, 4, 55, 141, 2, 2, 4, 5, 3, 4, 3, 14, 2, 1, 4, 3, 1, 18, 6, 3, 17, 36, 1, 10, 13, 1, 10, 2, 2, 86, 27, 7, 4, 50, 1, 4, 6, 4, 3, 13, 7, 3, 1, 207, 2, 7, 10, 10, 128, 7, 2, 4, 2, 9, 20, 2, 15, 24, 3, 10, 64, 7, 4, 4, 1, 4, 15, 8, 4, 1, 45, 3, 2, 1, 1, 2, 6, 28, 1, 2, 11, 1, 3, 14, 13, 3, 11, 12, 4, 28, 3, 7, 55, 40, 9, 4, 51, 5, 2, 6, 1, 2, 1, 15, 1
OFFSET
1,1
COMMENTS
It is not known whether the sequence is well-defined for all values. For example, does a(144) have a finite value? Cf. the sequence A260441, starting iteration from 1361 = A091209(144).
LINKS
FORMULA
a(n) = A260712(A091209(n)).
PROG
(PARI)
allocatemem((2^29));
v091209 = [5, 17, 23, 29, 43, 53, 71, 79, 83, 89, 101, 107, 113, 127, 139, 149, 151, 163, 173, 179, 181, 197, 199, 223, 227, 233, 251, 257, 263, 269, 271, 277, 281, 293, 307, 311, 317, 331, 337, 347, 349, 353, 359, 367, 373, 383, 389, 401, 409, 421, 431, 439, 443, 449, 457, 461, 467, 479, 491, 503, 509, 521, 523, 541, 547, 569, 571, 577, 593, 599, 619, 641, 643, 653, 659, 673, 683, 691, 709, 727, 733, 739, 743, 751, 773, 797, 809, 811, 821, 823, 829, 839, 853, 857, 863, 881, 887, 907, 919, 937, 941, 947, 977, 983, 991, 997, 1009, 1013, 1021, 1031, 1049, 1061, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1129, 1151, 1171, 1181, 1187, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1283, 1289, 1297, 1301, 1303, 1307, 1319, 1321, 1327];
A091209(n) = v091209[n];
A234742(n) = factorback(subst(lift(factor(Mod(1, 2)*Pol(binary(n)))), x, 2)); \\ After M. F. Hasler's Feb 18 2014 code.
A260712(n) = {my(prev=-1, i=-1); until((n==prev), prev = n; n = A234742(n); i++); return(i); }
for(n=1, 143, write("b260716.txt", n, " ", A260716(n)));
(Scheme) (define (A260716 n) (A260712 (A091209 n)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 04 2015
STATUS
approved