login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112521
Sequence related to NOR bracketings.
2
0, 1, 0, 6, 4, 60, 84, 700, 1440, 8910, 23100, 120120, 360360, 1684956, 5552064, 24302520, 85101456, 357502860, 1302562404, 5333981796, 19947127200, 80408748420, 305922388200, 1221485157360, 4701015343440, 18664243014300
OFFSET
0,4
COMMENTS
Conjecture: Starting with n=1, a(n) is the main diagonal of the array defined as T(1,1) = 1, T(i,j) = 0 if i<1 or j<1, T(n,k) = T(n,k-2) + T(n,k-1) -2*T(n-1,k-1) + T(n-1,k) + T(n-2,k). - Gerald McGarvey, Oct 07 2008
LINKS
FORMULA
a(n) = Sum_{j=0..n} (-1)^(j-1)*C(2*n-j-1, n-j)*C(2*(j-1), j-1). - corrected by Peter Bala, Aug 19 2014
a(n) = n*A055392(n), n>1.
a(n) = binomial(2*n-2, n-1)*Hypergeometric([-(n-1), 1/2], [2-2*n], -4) with a(0) = 0, a(1) = 1. - G. C. Greubel, Jan 11 2022
MATHEMATICA
a[n_]:= Sum[(-1)^j*Binomial[2*j, j]*Binomial[2*n-j-2, n-j-1], {j, 0, n-1}];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jan 11 2022 *)
PROG
(PARI) a(n) = sum(j=0, n, (-1)^(j-1)*binomial(2*n-j-1, n-j)*binomial(2*(j-1), j-1)); \\ Michel Marcus, Aug 19 2014
(Sage)
def a(n): return n if (n<2) else binomial(2*n-2, n-1)*simplify( hypergeometric([-(n-1), 1/2], [2-2*n], -4) )
[a(n) for n in (0..30)] # G. C. Greubel, Jan 11 2022
CROSSREFS
Cf. A055392.
Sequence in context: A327370 A375789 A260716 * A192350 A308900 A354949
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 09 2005
STATUS
approved