OFFSET
0,8
COMMENTS
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
Riordan array (1, (sqrt(3-2*sqrt(1-4*x)) - 1)/2).
T(n, k) = (k/n)*Sum_{j=0..n} (-1)^(j-k)*C(2*n-j-1, n-j)*C(2*j-k-1, j-k), with T(0, 0) = 1.
T(n, k) = (k/n)*binomial(2*n-k-1, n-1)*Hypergoemetric3F2([k-n, k/2, (1+k)/2], [k-2*n+1, k], -4), with T(0, 0) = 1. - G. C. Greubel, Jan 12 2022
EXAMPLE
Triangle begins
1;
0, 1;
0, 0, 1;
0, 2, 0, 1;
0, 1, 4, 0, 1;
0, 12, 2, 6, 0, 1;
0, 14, 28, 3, 8, 0, 1;
0, 100, 32, 48, 4, 10, 0, 1;
0, 180, 249, 54, 72, 5, 12, 0, 1;
0, 990, 440, 455, 80, 100, 6, 14, 0, 1;
MATHEMATICA
(* First program *)
c[x_]:= (1 - Sqrt[1-4x])/(2x);
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1&, # c[#] c[-# c[#]]&, 12] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
(* Second program *)
T[n_, k_]:= If[k==n, 1, (k/n)*Binomial[2*n-k-1, n-1]*HypergeometricPFQ[{k-n, k/2, (1+k)/2}, {k-2*n+1, k}, -4]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 12 2022 *)
PROG
(Magma)
A112519:= func< n, k | n eq 0 and k eq 0 select 1 else (k/n)*(&+[(-1)^j*Binomial(2*n-k-j-1, n-k-j)*Binomial(2*j+k-1, j): j in [0..n-k]]) >;
[A112519(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 12 2022
(Sage)
@CachedFunction
def A112519(n, k):
if (k==n): return 1
else: return (k/n)*sum( (-1)^j*binomial(2*n-k-j-1, n-k-j)*binomial(2*j+k-1, j) for j in (0..n-k) )
flatten([[A112519(n, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 12 2022
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Sep 09 2005
STATUS
approved