login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112519
Riordan array (1, x*c(x)*c(-x*c(x))), c(x) the g.f. of A000108.
4
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 4, 0, 1, 0, 12, 2, 6, 0, 1, 0, 14, 28, 3, 8, 0, 1, 0, 100, 32, 48, 4, 10, 0, 1, 0, 180, 249, 54, 72, 5, 12, 0, 1, 0, 990, 440, 455, 80, 100, 6, 14, 0, 1, 0, 2310, 2552, 792, 726, 110, 132, 7, 16, 0, 1, 0, 10920, 5876, 4836, 1248, 1070, 144, 168, 8, 18, 0, 1
OFFSET
0,8
COMMENTS
Row sums are A112520. Second column is essentially A055392. Inverse is A112517. Riordan array product (1, x*c(x))*(1, x*c(-x)).
FORMULA
Riordan array (1, (sqrt(3-2*sqrt(1-4*x)) - 1)/2).
T(n, k) = (k/n)*Sum_{j=0..n} (-1)^(j-k)*C(2*n-j-1, n-j)*C(2*j-k-1, j-k), with T(0, 0) = 1.
T(n, k) = (k/n)*binomial(2*n-k-1, n-1)*Hypergoemetric3F2([k-n, k/2, (1+k)/2], [k-2*n+1, k], -4), with T(0, 0) = 1. - G. C. Greubel, Jan 12 2022
EXAMPLE
Triangle begins
1;
0, 1;
0, 0, 1;
0, 2, 0, 1;
0, 1, 4, 0, 1;
0, 12, 2, 6, 0, 1;
0, 14, 28, 3, 8, 0, 1;
0, 100, 32, 48, 4, 10, 0, 1;
0, 180, 249, 54, 72, 5, 12, 0, 1;
0, 990, 440, 455, 80, 100, 6, 14, 0, 1;
MATHEMATICA
(* First program *)
c[x_]:= (1 - Sqrt[1-4x])/(2x);
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1&, # c[#] c[-# c[#]]&, 12] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
(* Second program *)
T[n_, k_]:= If[k==n, 1, (k/n)*Binomial[2*n-k-1, n-1]*HypergeometricPFQ[{k-n, k/2, (1+k)/2}, {k-2*n+1, k}, -4]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 12 2022 *)
PROG
(Magma)
A112519:= func< n, k | n eq 0 and k eq 0 select 1 else (k/n)*(&+[(-1)^j*Binomial(2*n-k-j-1, n-k-j)*Binomial(2*j+k-1, j): j in [0..n-k]]) >;
[A112519(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 12 2022
(Sage)
@CachedFunction
def A112519(n, k):
if (k==n): return 1
else: return (k/n)*sum( (-1)^j*binomial(2*n-k-j-1, n-k-j)*binomial(2*j+k-1, j) for j in (0..n-k) )
flatten([[A112519(n, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 12 2022
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Sep 09 2005
STATUS
approved