login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Riordan array (1, x*c(x)*c(-x*c(x))), c(x) the g.f. of A000108.
4

%I #12 Sep 08 2022 08:45:22

%S 1,0,1,0,0,1,0,2,0,1,0,1,4,0,1,0,12,2,6,0,1,0,14,28,3,8,0,1,0,100,32,

%T 48,4,10,0,1,0,180,249,54,72,5,12,0,1,0,990,440,455,80,100,6,14,0,1,0,

%U 2310,2552,792,726,110,132,7,16,0,1,0,10920,5876,4836,1248,1070,144,168,8,18,0,1

%N Riordan array (1, x*c(x)*c(-x*c(x))), c(x) the g.f. of A000108.

%C Row sums are A112520. Second column is essentially A055392. Inverse is A112517. Riordan array product (1, x*c(x))*(1, x*c(-x)).

%H G. C. Greubel, <a href="/A112519/b112519.txt">Rows n = 0..50 of the triangle, flattened</a>

%F Riordan array (1, (sqrt(3-2*sqrt(1-4*x)) - 1)/2).

%F T(n, k) = (k/n)*Sum_{j=0..n} (-1)^(j-k)*C(2*n-j-1, n-j)*C(2*j-k-1, j-k), with T(0, 0) = 1.

%F T(n, k) = (k/n)*binomial(2*n-k-1, n-1)*Hypergoemetric3F2([k-n, k/2, (1+k)/2], [k-2*n+1, k], -4), with T(0, 0) = 1. - _G. C. Greubel_, Jan 12 2022

%e Triangle begins

%e 1;

%e 0, 1;

%e 0, 0, 1;

%e 0, 2, 0, 1;

%e 0, 1, 4, 0, 1;

%e 0, 12, 2, 6, 0, 1;

%e 0, 14, 28, 3, 8, 0, 1;

%e 0, 100, 32, 48, 4, 10, 0, 1;

%e 0, 180, 249, 54, 72, 5, 12, 0, 1;

%e 0, 990, 440, 455, 80, 100, 6, 14, 0, 1;

%t (* First program *)

%t c[x_]:= (1 - Sqrt[1-4x])/(2x);

%t (* The function RiordanArray is defined in A256893. *)

%t RiordanArray[1&, # c[#] c[-# c[#]]&, 12] // Flatten (* _Jean-François Alcover_, Jul 16 2019 *)

%t (* Second program *)

%t T[n_, k_]:= If[k==n, 1, (k/n)*Binomial[2*n-k-1, n-1]*HypergeometricPFQ[{k-n, k/2, (1+k)/2}, {k-2*n+1, k}, -4]];

%t Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Jan 12 2022 *)

%o (Magma)

%o A112519:= func< n,k | n eq 0 and k eq 0 select 1 else (k/n)*(&+[(-1)^j*Binomial(2*n-k-j-1, n-k-j)*Binomial(2*j+k-1, j): j in [0..n-k]]) >;

%o [A112519(n,k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Jan 12 2022

%o (Sage)

%o @CachedFunction

%o def A112519(n,k):

%o if (k==n): return 1

%o else: return (k/n)*sum( (-1)^j*binomial(2*n-k-j-1, n-k-j)*binomial(2*j+k-1, j) for j in (0..n-k) )

%o flatten([[A112519(n,k) for k in (0..n)] for n in (0..10)]) # _G. C. Greubel_, Jan 12 2022

%Y Cf. A000108, A055392, A112517, A112520.

%K easy,nonn,tabl

%O 0,8

%A _Paul Barry_, Sep 09 2005