login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112516
Numbers k such that the first 9 decimal digits of the k-th Fibonacci number is 1-9 pandigital.
4
2749, 4589, 7102, 7727, 8198, 9383, 12633, 15708, 19014, 21206, 21303, 21434, 21566, 22706, 22890, 25790, 28244, 29877, 32174, 32717, 34433, 34883, 37965, 44691, 47422, 48635, 54473, 60438, 60536, 63902, 68340, 72424, 73147, 75873
OFFSET
1,1
EXAMPLE
The 2749th Fibonacci number is:
14372 68955 33879 17661 82964 56715 64334 14434 76345 06448 91772 ...
which is 1-9 pandigital in its first 9 digits.
MAPLE
filter:= n -> convert(convert(combinat:-fibonacci(n), base, 10)[-9..-1], set) = {$1..9}:
select(filter, [$40.. 5 * 10^4]); # Robert Israel, May 31 2015
MATHEMATICA
fQ[n_] := Sort@Take[IntegerDigits@Fibonacci@n, 9] == {1, 2, 3, 4, 5, 6, 7, 8, 9}; Select[ Range[40, 77705], fQ[ # ] &] (* Robert G. Wilson v, Dec 27 2005 *)
PROG
(J) NB. (www.jsoftware.com):
plus=: 4 : 0
'x xe'=. +. x.
'y ye'=. +. y.
e=. xe>.ye
z=. (x*10^xe-e)+y*10^ye-e
(z%10^b) j. e+b=. 10<:z
)
g =: 3 : '{."1 ({:, plus/)^:(<y.) 0 1'
gi=: 3 : 'I. ''.123456789'' -:"1 /:~"1 ] 10{."1 ] 0j18":, .g y.'
gi n
NB. Basically, using the Fibonacci recurrence using IEEE floating point numbers separately for the mantissa and the exponent, then look for numbers that whose first 9 digits are 1-9 pandigital.
CROSSREFS
Sequence in context: A044885 A159581 A145048 * A325065 A045151 A122107
KEYWORD
nonn,base
AUTHOR
Roger Hui, Dec 22 2005
EXTENSIONS
a(31)-a(34) from Robert G. Wilson v, Dec 27 2005
STATUS
approved