login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112522
Expansion of (1+3*x+14*x^2-10*x^3-10*x^4+16*x^5+15*x^6-15*x^7-2*x^8+4*x^9+8*x^10) / ((1+4*x^2)*(1-x^2+x^4)*(1+x^2)^2).
2
1, 3, 9, -25, -59, 129, 273, -563, -1145, 2313, 4651, -9329, -18689, 37411, 74857, -149753, -299547, 599137, 1198321, -2396691, -4793433, 9586921, 19173899, -38347857, -76695777, 153391619, 306783305, -613566681, -1227133435, 2454266945, 4908533969, -9817068019, -19634136121
OFFSET
0,2
FORMULA
a(n) = -5*a(n-2) - 4*a(n-4) - a(n-6) - 5*a(n-8) - 4*a(n-10) for n > 10. - Colin Barker, May 18 2019
MATHEMATICA
LinearRecurrence[{0, -5, 0, -4, 0, -1, 0, -5, 0, -4}, {1, 3, 9, -25, -59, 129, 273, -563, -1145, 2313, 4651}, 40] (* G. C. Greubel, Jan 12 2022 *)
PROG
(PARI) Vec((1+3*x+14*x^2-10*x^3-10*x^4+16*x^5+15*x^6-15*x^7-2*x^8+4*x^9+8*x^10)/( (1+4*x^2)*(1-x^2+x^4)*(1+x^2)^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
(Sage)
def A112522_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1 +3*x +14*x^2 -10*x^3 -10*x^4 +16*x^5 +15*x^6 -15*x^7 -2*x^8 +4*x^9 +8*x^10)/((1+4*x^2)*(1-x^2+x^4)*(1+x^2)^2) ).list()
A112522_list(40) # G. C. Greubel, Jan 12 2022
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 40);
Coefficients(R!( (1 +3*x +14*x^2 -10*x^3 -10*x^4 +16*x^5 +15*x^6 -15*x^7 -2*x^8 +4*x^9 +8*x^10)/((1+4*x^2)*(1-x^2+x^4)*(1+x^2)^2) )); // G. C. Greubel, Jan 12 2022
CROSSREFS
Cf. A112523.
Sequence in context: A032681 A293852 A005209 * A005262 A101357 A004255
KEYWORD
sign,easy
AUTHOR
Creighton Dement, Sep 09 2005
STATUS
approved