login
A112524
a(n) = a(n-1) + 2*n^2 with a(1) = 1.
2
1, 9, 27, 59, 109, 181, 279, 407, 569, 769, 1011, 1299, 1637, 2029, 2479, 2991, 3569, 4217, 4939, 5739, 6621, 7589, 8647, 9799, 11049, 12401, 13859, 15427, 17109, 18909, 20831, 22879, 25057, 27369, 29819, 32411, 35149, 38037, 41079, 44279, 47641
OFFSET
1,2
COMMENTS
This is the total number of operations or total storage if a process first replaces a square array by an array one smaller, repeatedly down to 1 and then regrows the array to the original size.
LINKS
Eric Weisstein's World of Mathematics, Condensation
FORMULA
Twice the sum of the first n square numbers - 1 = n*(n + 1)*(2n + 1)/3 - 1. - Stefan Steinerberger, Mar 11 2006
From R. J. Mathar, Sep 09 2008: (Start)
G.f.: x*(1 +5*x -3*x^2 +x^3)/(1-x)^4.
a(n) = A006331(n) - 1. (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), a(1)=1, a(2)=9, a(3)=27, a(4)=59. - Harvey P. Dale, Dec 03 2012
E.g.f.: ( 3 + (-3 + 6*x + 9*x^2 + 2*x^3)*exp(x) )/3. - G. C. Greubel, Jan 12 2022
MAPLE
a[1]:=1: for n from 2 to 50 do a[n]:=a[n-1]+2*n^2 od: seq(a[n], n=1..50); # Emeric Deutsch, Feb 13 2006
a:=n->sum(k^2, k=1..n):seq(a(n)+sum(k^2, k=2..n), n=1...40); # Zerinvary Lajos, Jun 11 2008
MATHEMATICA
Table[n*(n+1)*(2n+1)/3 - 1, {n, 50}] (* Stefan Steinerberger, Mar 11 2006 *)
2*Accumulate[Range[50]^2]-1 (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 9, 27, 59}, 50] (* Harvey P. Dale, Dec 03 2012 *)
PROG
(Sage) [n*(n+1)*(2*n+1)/3 - 1 for n in (1..40)] # G. C. Greubel, Jan 12 2022
(Magma) [n*(n+1)*(2*n+1)/3 - 1: n in [1..40]]; // G. C. Greubel, Jan 12 2022
CROSSREFS
Cf. A006331.
Sequence in context: A051412 A027468 A158926 * A254622 A374976 A340119
KEYWORD
easy,nonn
AUTHOR
Dennis Farr (dfarr(AT)comcast.net), Dec 13 2005
EXTENSIONS
Definition corrected by Alexandre Wajnberg, Jan 02 2006
More terms from Emeric Deutsch, Feb 13 2006
More terms from Stefan Steinerberger, Mar 11 2006
STATUS
approved