The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112525 Expansion of 1/(1 - 100*x^2 - 100*x^3). 1
 1, 0, 100, 100, 10000, 20000, 1010000, 3000000, 103000000, 401000000, 10600000000, 50400000000, 1100100000000, 6100000000000, 115050000000000, 720010000000000, 12115000000000000, 83506000000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS 10^(floor((n+1)/2)) | a(n), n>=0. - G. C. Greubel, Jan 12 2022 LINKS G. C. Greubel, Table of n, a(n) for n = 0..950 Index entries for linear recurrences with constant coefficients, signature (0,100,100). FORMULA a(n) = Sum_{k=0..floor(n/2)} C((n-k)/2, k)*10^(n-k)*(1 + (-1)^(n-k))/2. MATHEMATICA a[n_]:= a[n]= (1/2)*Sum[(1+(-1)^(k+n))*10^(n-k)*Binomial[(n-k)/2, k], {k, 0, Floor[n/2]}]; Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jan 12 2022 *) CoefficientList[Series[1/(1-100x^2-100x^3), {x, 0, 20}], x] (* or *) LinearRecurrence[ {0, 100, 100}, {1, 0, 100}, 20] (* Harvey P. Dale, Mar 18 2023 *) PROG (Sage) def A112525_list(prec): P. = PowerSeriesRing(ZZ, prec) return P( 1/(1 -100*x^2 -100*x^3) ).list() A112525_list(40) # G. C. Greubel, Jan 12 2022 (Magma) R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 1/(1 -100*x^2 -100*x^3) )); // G. C. Greubel, Jan 12 2022 CROSSREFS Sequence in context: A308660 A220023 A115048 * A000865 A135600 A134999 Adjacent sequences: A112522 A112523 A112524 * A112526 A112527 A112528 KEYWORD easy,nonn AUTHOR Paul Barry, Sep 09 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 18:41 EDT 2024. Contains 373410 sequences. (Running on oeis4.)