login
A112527
a(1)=2; a(n)=smallest prime not less than the sum of all previous terms.
1
2, 2, 5, 11, 23, 43, 89, 179, 359, 719, 1433, 2879, 5749, 11497, 22993, 45989, 91997, 183971, 367949, 735901, 1471807, 2943599, 5887213, 11774429, 23548853, 47097697, 94195421, 188390809, 376781623, 753563269, 1507126519, 3014253049
OFFSET
1,1
COMMENTS
See A070218: a(1)=2;a(n)=smallest prime greater than the sum of all previous terms.
LINKS
MATHEMATICA
s={2}; ss=2; Do[a=If[PrimeQ[ss], ss, Prime[PrimePi[ss]+1]]; AppendTo[s, a]; AddTo[ss, a], {i, 35}]; A112527=s
Module[{ll={2}}, Do[AppendTo[ll, NextPrime[Total[ll]-1]], {40}]; ll] (* Harvey P. Dale, May 07 2012 *)
nxt[{t_, a_}]:= Module[{c=NextPrime[t-1]}, {t+c, c}]; Rest[NestList[nxt, {0, 2}, 40][[All, 2]]] (* Harvey P. Dale, Nov 22 2019 *)
CROSSREFS
Cf. A070218.
Cf. A064934. [From R. J. Mathar, Aug 15 2008]
Sequence in context: A078405 A109278 A367966 * A216642 A227999 A049680
KEYWORD
easy,nonn
AUTHOR
Zak Seidov, Sep 10 2005
STATUS
approved