login
A109278
Fastest increasing sequence in which a(n) is a prime closest to the sum of all previous terms.
1
2, 2, 5, 11, 19, 41, 79, 157, 317, 631, 1259, 2521, 5039, 10079, 20161, 40343, 80669, 161333, 322669, 645329, 1290673, 2581349, 5162681, 10325369, 20650753, 41301493, 82602997, 165205981, 330411959, 660823921, 1321647869, 2643295709
OFFSET
1,1
COMMENTS
A109277 is the slowest increasing sequence in which a(n) is a prime closest to the sum of all previous terms.
EXAMPLE
a(1)=2, sum(1)=2; prime closest to sum is 2, hence a(2)=2, sum(2)=4; there are two primes 3 and 5 closest to sum(2), we choose the largest one, hence a(3)=5, sum(3)=7, etc.
MATHEMATICA
s={2}; su=2; Do[If[PrimeQ[su], a=su, pp=PrimePi[su]; prv=Prime[pp]; nxt=Prime[pp+1]; a=If[su-prv<nxt-su, prv, nxt]]; AppendTo[s, a]; Print[a]; su+=a, {i, 42}]; s
CROSSREFS
Cf. A109277.
Sequence in context: A375317 A336269 A078405 * A367966 A112527 A216642
KEYWORD
nonn
AUTHOR
Zak Seidov, Jun 25 2005
EXTENSIONS
Definition and comment clarified by Jonathan Sondow, Jun 16 2012
STATUS
approved