The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A126938 a(1) = 3, a(n) = the smallest prime p > a(n-1) such that (a(n-1)+p)/2 is prime. 5
 3, 7, 19, 43, 79, 127, 151, 163, 199, 223, 331, 367, 379, 439, 487, 607, 619, 643, 739, 883, 991, 1051, 1087, 1171, 1231, 1327, 1471, 1627, 1699, 1747, 1759, 1987, 1999, 2179, 2383, 2551, 2683, 2731, 2767, 3067, 3259, 3343, 3571, 3643, 3739, 3847, 3907 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Starting with a(2)=7 all terms are 7 mod 12. - Zak Seidov, Feb 26 2017 LINKS Zak Seidov, Table of n, a(n) for n = 1..1000 EXAMPLE (3+7)/2=5 prime, (7+19)/2=13 prime, (19+43)/2=31 prime, etc. MAPLE A[1]:= 3: A[2]:= 7: for n from 3 to 100 do A[n]:= f(A[n-1]) od: seq(A[i], i=1..100); # Robert Israel, Feb 27 2017 MATHEMATICA s={3}; pn=3; n=PrimePi[pn]; Do[Do[p=Prime[i]; If[PrimeQ[(pn+p)/2], AppendTo[s, p]; pn=p; n=i; Break[]], {i, n+1, 10000}], {112}]; s sp[n_]:=Module[{p=NextPrime[n]}, While[!PrimeQ[(n+p)/2], p=NextPrime[p]]; p]; NestList[sp, 3, 50] (* Harvey P. Dale, Apr 12 2013 *) PROG (PARI) step(q)=forprime(p=q+1, , if(isprime((p+q)/2), return(p))) first(n)=my(v=vector(n)); v[1]=3; for(k=2, n, v[k]=step(v[k-1])); v \\ Charles R Greathouse IV, Feb 27 2017 CROSSREFS Cf. A084704, A128653, A128654, A128655. Sequence in context: A086519 A090689 A145476 * A127990 A192301 A350249 Adjacent sequences: A126935 A126936 A126937 * A126939 A126940 A126941 KEYWORD nonn AUTHOR Zak Seidov, Mar 18 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 15:59 EDT 2024. Contains 372968 sequences. (Running on oeis4.)