login
A045513
Expansion of 1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)).
5
1, 1, 3, 5, 10, 15, 27, 39, 63, 90, 135, 187, 270, 364, 505, 670, 902, 1173, 1545, 1976, 2550, 3218, 4081, 5083, 6357, 7825, 9659, 11772, 14366, 17342, 20956, 25080, 30031, 35667, 42357, 49945, 58881
OFFSET
0,3
COMMENTS
This is associated with the root system E8, and can be described using the additive function on the affine E8 diagram:
3
|
2--4--6--5--4--3--2--1
LINKS
Arjeh M. Cohen and Robert L. Griess Jr., On finite simple subgroups of the complex Lie group of type E_8, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), 367-405, Proc. Sympos. Pure Math., 47, Part 2, Amer. Math. Soc., Providence, RI, 1987.
Kaiwen Sun and Haowu Wang, Weyl invariant E8 Jacobi forms and E-strings, arXiv:2109.10578 [math.NT], 2021. See Table 1 p. 9.
Index entries for linear recurrences with constant coefficients, signature (1,2,0,-1,-4,-1,0,3,6,1,0,-4,-5,-5,0,5,5,4,0,-1,-6,-3,0,1,4,1,0,-2,-1,1).
FORMULA
G.f.: 1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)).
MAPLE
seq(coeff(series(1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)), x, n+1), x, n), n = 0..40); # G. C. Greubel, Jan 13 2020
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^2)^2(1-x^3)^2(1-x^4)^2(1-x^5)(1-x^6)), {x, 0, 40}], x] (* Harvey P. Dale, Sep 16 2019 *)
PROG
(PARI) Vec(1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)) )); // G. C. Greubel, Jan 13 2020
CROSSREFS
For G2, the corresponding sequence is A001399.
For D4, the corresponding sequence is A001752.
For F4, the corresponding sequence is A115264.
For E6, the corresponding sequence is A164680.
For E7, the corresponding sequence is A210068.
Sequence in context: A097513 A308932 A308997 * A326472 A326597 A008337
KEYWORD
nonn,easy
STATUS
approved