The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A045513 Expansion of 1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)). 4
 1, 1, 3, 5, 10, 15, 27, 39, 63, 90, 135, 187, 270, 364, 505, 670, 902, 1173, 1545, 1976, 2550, 3218, 4081, 5083, 6357, 7825, 9659, 11772, 14366, 17342, 20956, 25080, 30031, 35667, 42357, 49945, 58881 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This is associated with the root system E8, and can be described using the additive function on the affine E8 diagram:       3       | 2--4--6--5--4--3--2--1 REFERENCES Cohen, Arjeh M.; Griess, Robert L., Jr.; On finite simple subgroups of the complex Lie group of type E_8. The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), 367-405, Proc. Sympos. Pure Math., 47, Part 2, Amer. Math. Soc., Providence, RI, 1987. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA G.f.: 1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)). MAPLE seq(coeff(series(1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)), x, n+1), x, n), n = 0..40); # G. C. Greubel, Jan 13 2020 MATHEMATICA CoefficientList[Series[1/((1-x)(1-x^2)^2(1-x^3)^2(1-x^4)^2(1-x^5)(1-x^6)), {x, 0, 40}], x] (* Harvey P. Dale, Sep 16 2019 *) PROG (sage) x=PowerSeriesRing(QQ, 'x', 40).gen() 1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)) (PARI) Vec(1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012 (MAGMA) R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)) )); // G. C. Greubel, Jan 13 2020 CROSSREFS For G2, the corresponding sequence is A001399. For F4, the corresponding sequence is A115264. For E6, the corresponding sequence is A164680. For E7, the corresponding sequence is A210068. Sequence in context: A097513 A308932 A308997 * A326472 A326597 A008337 Adjacent sequences:  A045510 A045511 A045512 * A045514 A045515 A045516 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 17:02 EDT 2020. Contains 334787 sequences. (Running on oeis4.)