The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308997 Sum of the second largest parts in the partitions of n into 8 parts. 8
 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 10, 15, 27, 39, 63, 89, 133, 183, 264, 353, 488, 644, 864, 1116, 1465, 1863, 2397, 3009, 3802, 4713, 5877, 7200, 8859, 10753, 13084, 15731, 18956, 22603, 26993, 31948, 37839, 44477, 52307, 61082, 71349, 82842, 96177 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 LINKS FORMULA a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} i. a(n) = A308989(n) - A308990(n) - A308991(n) - A308992(n) - A308994(n) - A308995(n) - A308996(n) - A308998(n). MATHEMATICA Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[i, {i, j, Floor[(n - j - k - l - m - o - p)/2]}], {j, k, Floor[(n - k - l - m - o - p)/3]}], {k, l, Floor[(n - l - m - o - p)/4]}], {l, m, Floor[(n - m - o - p)/5]}], {m, o, Floor[(n - o - p)/6]}], {o, p, Floor[(n - p)/7]}], {p, Floor[n/8]}], {n, 0, 50}] CROSSREFS Cf. A026814, A308989, A308990, A308991, A308992, A308994, A308995, A308996, A308998. Sequence in context: A308872 A097513 A308932 * A045513 A326472 A326597 Adjacent sequences:  A308994 A308995 A308996 * A308998 A308999 A309000 KEYWORD nonn AUTHOR Wesley Ivan Hurt, Jul 04 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 04:57 EST 2020. Contains 331335 sequences. (Running on oeis4.)