This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308992 Sum of the sixth largest parts in the partitions of n into 8 parts. 8
 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 12, 17, 26, 35, 50, 67, 94, 123, 167, 216, 285, 362, 469, 589, 749, 931, 1165, 1431, 1771, 2152, 2630, 3171, 3836, 4585, 5497, 6521, 7753, 9134, 10775, 12615, 14784, 17202, 20030, 23182, 26837, 30897, 35581, 40769 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 LINKS FORMULA a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} m. a(n) = A308989(n) - A308990(n) - A308991(n) - A308994(n) - A308995(n) - A308996(n) - A308997(n) - A308998(n). MATHEMATICA Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[m, {i, j, Floor[(n - j - k - l - m - o - p)/2]}], {j, k, Floor[(n - k - l - m - o - p)/3]}], {k, l, Floor[(n - l - m - o - p)/4]}], {l, m, Floor[(n - m - o - p)/5]}], {m, o, Floor[(n - o - p)/6]}], {o, p, Floor[(n - p)/7]}], {p, Floor[n/8]}], {n, 0, 50}] CROSSREFS Cf. A026814, A308989, A308990, A308991, A308994, A308995, A308996, A308997, A308998. Sequence in context: A027959 A060730 A308928 * A326468 A326593 A123569 Adjacent sequences:  A308989 A308990 A308991 * A308993 A308994 A308995 KEYWORD nonn AUTHOR Wesley Ivan Hurt, Jul 04 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 22:42 EST 2019. Contains 329987 sequences. (Running on oeis4.)