%I #6 Jul 04 2019 20:38:17
%S 0,0,0,0,0,0,0,0,1,1,2,3,5,7,12,17,26,35,50,67,94,123,167,216,285,362,
%T 469,589,749,931,1165,1431,1771,2152,2630,3171,3836,4585,5497,6521,
%U 7753,9134,10775,12615,14784,17202,20030,23182,26837,30897,35581,40769
%N Sum of the sixth largest parts in the partitions of n into 8 parts.
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} m.
%F a(n) = A308989(n) - A308990(n) - A308991(n) - A308994(n) - A308995(n) - A308996(n) - A308997(n) - A308998(n).
%t Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[m, {i, j, Floor[(n - j - k - l - m - o - p)/2]}], {j, k, Floor[(n - k - l - m - o - p)/3]}], {k, l, Floor[(n - l - m - o - p)/4]}], {l, m, Floor[(n - m - o - p)/5]}], {m, o, Floor[(n - o - p)/6]}], {o, p, Floor[(n - p)/7]}], {p, Floor[n/8]}], {n, 0, 50}]
%Y Cf. A026814, A308989, A308990, A308991, A308994, A308995, A308996, A308997, A308998.
%K nonn
%O 0,11
%A _Wesley Ivan Hurt_, Jul 04 2019