login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164677
For a binary reflected Gray code, the (Hamming/Euclidean) distance between 2 subsequent points x and y is 1, say in coordinate k. If y has a 1 in coordinate k and x has a 0, than (x,y) is indicated by k, if it is the other way around, (x,y) is indicated by -k. The sequence has a fractal character such that G(d+1) = G(d) d+1 R(G(d)) where R(G(d)) alters d --> -d and leaves all other numbers invariant.
4
1, 2, -1, 3, 1, -2, -1, 4, 1, 2, -1, -3, 1, -2, -1, 5, 1, 2, -1, 3, 1, -2, -1, -4, 1, 2, -1, -3, 1, -2, -1, 6, 1, 2, -1, 3, 1, -2, -1, 4, 1, 2, -1, -3, 1, -2, -1, -5, 1, 2, -1, 3, 1, -2, -1, -4, 1, 2, -1, -3, 1, -2, -1, 7, 1, 2, -1, 3, 1, -2, -1, 4, 1, 2, -1, -3, 1, -2, -1, 5
OFFSET
1,2
COMMENTS
This is the paper-folding sequence Fold(1,2,3,4,5,...). It is also the fixed point of the map 1->1,2; 2->-1,3; 3->-1,4; 4->-1,5; ...; -1->1,-2; -2->-1,-3; -3->-1,-4; -4->-1,-5; ... [Allouche and Shallit]. - N. J. A. Sloane, Jul 27 2012
Multiplicative because both A034947 and A001511 are. - Andrew Howroyd, Aug 06 2018
REFERENCES
J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 203, Exercise 15.
FORMULA
a(n) = (-1)^chi_A091067(n)*A001511(n), where chi_A091067 is the characteristic function of A091067. - M. F. Hasler, Aug 06 2015
a(n) = A034947(n)*A001511(n). - Andrew Howroyd, Aug 06 2018
MATHEMATICA
a[n_] := KroneckerSymbol[-1, n] * IntegerExponent[2n, 2];
Array[a, 80] (* Jean-François Alcover, Sep 08 2019 *)
PROG
(PARI) A164677(n)=(valuation(n, 2)+1)*if(n>>valuation(n, 2)%4==3, -1, 1) \\ M. F. Hasler, Aug 06 2015
CROSSREFS
Absolute values give A001511.
Indices of negative terms are listed in A091067. - M. F. Hasler, Aug 06 2015
Cf. A034947.
Sequence in context: A187808 A317673 A317954 * A001511 A265331 A347705
KEYWORD
easy,sign,mult
AUTHOR
Arie Bos, Aug 20 2009
EXTENSIONS
More terms from Alois P. Heinz, Jan 30 2012
STATUS
approved