login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of A189733: periodic sequence repeating [0, 1, 1, 1, 0, -1].
0

%I #24 Oct 07 2017 22:11:05

%S 0,1,1,1,0,-1,0,1,1,1,0,-1,0,1,1,1,0,-1,0,1,1,1,0,-1,0,1,1,1,0,-1,0,1,

%T 1,1,0,-1,0,1,1,1,0,-1,0,1,1,1,0,-1,0,1,1,1,0,-1,0,1,1,1,0,-1,0,1,1,1,

%U 0,-1,0,1,1,1,0,-1,0,1,1,1,0,-1,0,1,1,1,0,-1,0,1,1,1,0,-1,0,1,1,1,0,-1,0,1,1,1,0

%N Numerators of A189733: periodic sequence repeating [0, 1, 1, 1, 0, -1].

%C See A189733.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,-1,1).

%F G.f.: x*(1+x^2-x^3)/((1-x)*(1-x+x^2)*(1+x+x^2)).

%F From _Wesley Ivan Hurt_, Oct 03 2017: (Start)

%F a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n > 4.

%F a(n) = (1+(-1)^floor((n-1)/3))/2-floor((n+1)/6)+floor(n/6). (End)

%t b[m_, n_] := b[m, n] = Which[m == n, 0, n == m + 1, (-1)^(n + 1)/n, n > m, b[m, n - 1] + b[m + 1, n - 1], n < m, b[m - 1, n + 1] - b[m - 1, n]]; a[n_] := b[0, n] // Numerator; Table[a[n], {n, 0, 100}]

%t (* or, simply: *)

%t a[n_] := {0, 1, 1, 1, 0, -1}[[Mod[n, 6]+1]]; Table[a[n], {n, 0, 100}]

%o (PARI) Vec(x*(1+x^2-x^3)/((1-x)*(1-x+x^2)*(1+x+x^2))+O(x^99)) \\ _Charles R Greathouse IV_, Dec 02 2016

%Y Cf. A189733, A194767, A267068.

%K frac,sign,easy

%O 0

%A _Jean-François Alcover_ and _Paul Curtz_, Nov 30 2016