login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278714
Denominators of (n-1)*(n-3)/(6*(2*n-1)), for n >= 1. Denominators of Dedekind sum s(2, 2*n-1).
3
1, 18, 1, 14, 27, 22, 13, 18, 17, 38, 63, 46, 5, 162, 29, 62, 99, 14, 37, 234, 41, 86, 27, 94, 49, 306, 53, 22, 171, 118, 61, 378, 13, 134, 207, 142, 73, 90, 77, 158, 243, 166, 17, 522, 89, 182, 279, 38, 97, 594, 101, 206, 63, 214, 109, 666, 113, 46, 351, 238
OFFSET
1,2
COMMENTS
For the numerators see A278713, also for references and details.
LINKS
FORMULA
a(n) = denominator((n-1)*(n-3)/(6*(2*n-1))) (in lowest terms), n >= 1.
a(n) = denominator(r(n)), with r(n) = s(2,2*n-1) where s(2,k) = Sum_{r=1..(k-1)} (r/k)*(2*r/k - floor(2*r/k)- 1/2), for odd k.
From Robert Israel, Dec 07 2016: (Start)
(2n+59) a(n) = (2n-1) a(n+30).
a(n) = 6(2n-1)/b(n) where
b(n) = 1 if n == 2, 14, 20, or 26 (mod 30)
b(n) = 2 if n == 5, 11, 17, or 29 (mod 30)
b(n) = 3 if n == 0, 4, 6, 10, 12, 16, 22, or 24 (mod 30)
b(n) = 5 if n == 8 (mod 30)
b(n) = 6 if n == 1, 7, 9, 15, 19, 21, 25, or 27 (mod 30)
b(n) = 10 if n == 23 (mod 30)
b(n) = 15 if n == 18 or 28 (mod 30)
b(n) = 30 if n == 3 or 13 (mod 30).
G.f.: x*(1+18*x+x^2+14*x^3+27*x^4+22*x^5+13*x^6+18*x^7+17*x^8+38*x^9+63*x^10+46*x^11
+5*x^12+162*x^13+29*x^14+62*x^15+99*x^16+14*x^17+37*x^18+234*x^19+41*x^20+86*x^21
+27*x^22+94*x^23+49*x^24+306*x^25+53*x^26+22*x^27+171*x^28+118*x^29+59*x^30
+342*x^31+11*x^32+106*x^33+153*x^34+98*x^35+47*x^36+54*x^37+43*x^38+82*x^39
+117*x^40+74*x^41+7*x^42+198*x^43+31*x^44+58*x^45+81*x^46+10*x^47+23*x^48
+126*x^49+19*x^50+34*x^51+9*x^52+26*x^53+11*x^54+54*x^55+7*x^56+2*x^57+9*x^58
+2*x^59)/(1-x^30)^2.
(End)
MAPLE
seq(denom((n-1)*(n-3)/(6*(2*n-1))), n=1..100); # Robert Israel, Dec 07 2016
MATHEMATICA
Table[((n-1)(n-3))/(6(2n-1)), {n, 60}]//Denominator (* Harvey P. Dale, Feb 10 2019 *)
PROG
(PARI) a(n) = denominator((n-1)*(n-3)/(6*(2*n-1))) \\ Felix Fröhlich, Nov 28 2016
(Magma) [Denominator((n-1)*(n-3)/(6*(2*n-1))): n in [1..60]]; // Vincenzo Librandi, Dec 08 2016
CROSSREFS
Cf. A278713.
Sequence in context: A152209 A040338 A040339 * A040340 A040341 A111872
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Nov 28 2016
STATUS
approved