login
A105966
Expansion of A/B with A = (-1+x^15-x^10-x^9-x^8-2*x^5-x^4) and B = (x-1)*(x+1)*(x^2+x+1)*(x^4+x^3+x^2+x+1)*(x^4-x^3+x^2-x+1)*(x^8-x^7+x^5-x^4+x^3-x+1).
1
1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0
OFFSET
0,21
COMMENTS
Sequence appears to be periodic with initial period (1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, -1, 0, 0, 0, 0). (Period 30).
Floretion Algebra Multiplication Program, FAMP Code: 2ibasefizrokseq[ + .5'i + .5'ii' - .5'ij' + .5'ik'], RokType: Y[sqa.Findk()] = Y[sqa.Findk()] + 1 (internal program code). FizType: ChuRed.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1).
FORMULA
a(n) = -a(n-5) + a(n-15) + a(n-20) for n>19. - Colin Barker, May 15 2019
MATHEMATICA
LinearRecurrence[{0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 1}, 120] (* Harvey P. Dale, Sep 05 2022 *)
PROG
(PARI) Vec((1 + x^4 + 2*x^5 + x^8 + x^9 + x^10 - x^15) / ((1 - x)*(1 + x)*(1 + x + x^2)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)*(1 - x + x^3 - x^4 + x^5 - x^7 + x^8)) + O(x^100)) \\ Colin Barker, May 15 2019
CROSSREFS
Sequence in context: A216511 A138088 A112765 * A318950 A319000 A083915
KEYWORD
sign,easy
AUTHOR
Creighton Dement, Apr 28 2005
STATUS
approved