The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105964 Expansion of x*(1+x^3-x^6+x^7)/(1-x^6)^2. 1
 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 1, 2, 0, 3, 0, 0, 1, 3, 0, 4, 0, 0, 1, 4, 0, 5, 0, 0, 1, 5, 0, 6, 0, 0, 1, 6, 0, 7, 0, 0, 1, 7, 0, 8, 0, 0, 1, 8, 0, 9, 0, 0, 1, 9, 0, 10, 0, 0, 1, 10, 0, 11, 0, 0, 1, 11, 0, 12, 0, 0, 1, 12, 0, 13, 0, 0, 1, 13, 0, 14, 0, 0, 1, 14, 0, 15, 0, 0, 1, 15, 0, 16, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 COMMENTS Floretion Algebra Multiplication Program, FAMP Code: 2jbasekfizrokseq[.5'i + .5'ii' - .5'ij' + .5'ik'], RokType: Y[sqa.Findk()] = Y[sqa.Findk()] + 1 (internal program code). FizType: 'i, 'j, 'k. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,2,0,0,0,0,0,-1). FORMULA G.f.: x*(1+x^3-x^6+x^7)/((1-x)*(1+x)*(1+x+x^2)*(1-x+x^2))^2. a(n) = 2*a(n-6) - a(n-12) for n>11. - Colin Barker, May 13 2019 MAPLE seq(coeff(series(x*(1+x^3-x^6+x^7)/(1-x^6)^2, x, n+1), x, n), n = 0..100); # G. C. Greubel, Jan 15 2020 MATHEMATICA CoefficientList[Series[x(1+x^3-x^6+x^7)/(1-x^6)^2, {x, 0, 100}], x] (* or *) LinearRecurrence[{0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -1}, {0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0}, 100] (* Harvey P. Dale, Aug 08 2019 *) PROG (PARI) concat(0, Vec(x*(1 +x^3 -x^6 +x^7)/(1-x^6)^2 + O(x^100))) \\ Colin Barker, May 13 2019 (Magma) R:=PowerSeriesRing(Integers(), 100); Coefficients(R!( x*(1+x^3-x^6+x^7)/(1-x^6)^2 )); // G. C. Greubel, Jan 15 2020 (SageMath) def A105964_list(prec): P. = PowerSeriesRing(ZZ, prec) return P( x*(1+x^3-x^6+x^7)/(1-x^6)^2 ).list() A105964_list(100) # G. C. Greubel, Jan 15 2020 (GAP) a:=[0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0];; for n in [13..100] do a[n]:=2*a[n-6]-a[n-12]; od; a; # G. C. Greubel, Jan 15 2020 CROSSREFS Sequence in context: A035217 A357237 A277808 * A303051 A324044 A364046 Adjacent sequences: A105961 A105962 A105963 * A105965 A105966 A105967 KEYWORD nonn,easy AUTHOR Creighton Dement, Apr 28 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 13 08:45 EDT 2024. Contains 375904 sequences. (Running on oeis4.)