login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105964
Expansion of x*(1+x^3-x^6+x^7)/(1-x^6)^2.
1
0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 1, 2, 0, 3, 0, 0, 1, 3, 0, 4, 0, 0, 1, 4, 0, 5, 0, 0, 1, 5, 0, 6, 0, 0, 1, 6, 0, 7, 0, 0, 1, 7, 0, 8, 0, 0, 1, 8, 0, 9, 0, 0, 1, 9, 0, 10, 0, 0, 1, 10, 0, 11, 0, 0, 1, 11, 0, 12, 0, 0, 1, 12, 0, 13, 0, 0, 1, 13, 0, 14, 0, 0, 1, 14, 0, 15, 0, 0, 1, 15, 0, 16, 0, 0, 1
OFFSET
0,11
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code: 2jbasekfizrokseq[.5'i + .5'ii' - .5'ij' + .5'ik'], RokType: Y[sqa.Findk()] = Y[sqa.Findk()] + 1 (internal program code). FizType: 'i, 'j, 'k.
FORMULA
G.f.: x*(1+x^3-x^6+x^7)/((1-x)*(1+x)*(1+x+x^2)*(1-x+x^2))^2.
a(n) = 2*a(n-6) - a(n-12) for n>11. - Colin Barker, May 13 2019
MAPLE
seq(coeff(series(x*(1+x^3-x^6+x^7)/(1-x^6)^2, x, n+1), x, n), n = 0..100); # G. C. Greubel, Jan 15 2020
MATHEMATICA
CoefficientList[Series[x(1+x^3-x^6+x^7)/(1-x^6)^2, {x, 0, 100}], x] (* or *) LinearRecurrence[{0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -1}, {0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0}, 100] (* Harvey P. Dale, Aug 08 2019 *)
PROG
(PARI) concat(0, Vec(x*(1 +x^3 -x^6 +x^7)/(1-x^6)^2 + O(x^100))) \\ Colin Barker, May 13 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( x*(1+x^3-x^6+x^7)/(1-x^6)^2 )); // G. C. Greubel, Jan 15 2020
(SageMath)
def A105964_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1+x^3-x^6+x^7)/(1-x^6)^2 ).list()
A105964_list(100) # G. C. Greubel, Jan 15 2020
(GAP) a:=[0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0];; for n in [13..100] do a[n]:=2*a[n-6]-a[n-12]; od; a; # G. C. Greubel, Jan 15 2020
CROSSREFS
Sequence in context: A035217 A357237 A277808 * A303051 A324044 A364046
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Apr 28 2005
STATUS
approved