login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x*(1+x^3-x^6+x^7)/(1-x^6)^2.
1

%I #17 Mar 08 2024 12:15:23

%S 0,1,0,0,1,0,0,1,1,0,2,0,0,1,2,0,3,0,0,1,3,0,4,0,0,1,4,0,5,0,0,1,5,0,

%T 6,0,0,1,6,0,7,0,0,1,7,0,8,0,0,1,8,0,9,0,0,1,9,0,10,0,0,1,10,0,11,0,0,

%U 1,11,0,12,0,0,1,12,0,13,0,0,1,13,0,14,0,0,1,14,0,15,0,0,1,15,0,16,0,0,1

%N Expansion of x*(1+x^3-x^6+x^7)/(1-x^6)^2.

%C Floretion Algebra Multiplication Program, FAMP Code: 2jbasekfizrokseq[.5'i + .5'ii' - .5'ij' + .5'ik'], RokType: Y[sqa.Findk()] = Y[sqa.Findk()] + 1 (internal program code). FizType: 'i, 'j, 'k.

%H Colin Barker, <a href="/A105964/b105964.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,2,0,0,0,0,0,-1).

%F G.f.: x*(1+x^3-x^6+x^7)/((1-x)*(1+x)*(1+x+x^2)*(1-x+x^2))^2.

%F a(n) = 2*a(n-6) - a(n-12) for n>11. - _Colin Barker_, May 13 2019

%p seq(coeff(series(x*(1+x^3-x^6+x^7)/(1-x^6)^2, x, n+1), x, n), n = 0..100); # _G. C. Greubel_, Jan 15 2020

%t CoefficientList[Series[x(1+x^3-x^6+x^7)/(1-x^6)^2,{x,0,100}],x] (* or *) LinearRecurrence[{0,0,0,0,0,2,0,0,0,0,0,-1},{0,1,0,0,1,0,0,1,1,0,2,0},100] (* _Harvey P. Dale_, Aug 08 2019 *)

%o (PARI) concat(0, Vec(x*(1 +x^3 -x^6 +x^7)/(1-x^6)^2 + O(x^100))) \\ _Colin Barker_, May 13 2019

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( x*(1+x^3-x^6+x^7)/(1-x^6)^2 )); // _G. C. Greubel_, Jan 15 2020

%o (SageMath)

%o def A105964_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( x*(1+x^3-x^6+x^7)/(1-x^6)^2 ).list()

%o A105964_list(100) # _G. C. Greubel_, Jan 15 2020

%o (GAP) a:=[0,1,0,0,1,0,0,1,1,0,2,0];; for n in [13..100] do a[n]:=2*a[n-6]-a[n-12]; od; a; # _G. C. Greubel_, Jan 15 2020

%K nonn,easy

%O 0,11

%A _Creighton Dement_, Apr 28 2005