OFFSET
1,4
COMMENTS
Also the number of ordered multiset partitions of the multiset of prime indices of n where the sequence of GCDs of the blocks is weakly increasing. If we form a multiorder by treating integer partitions (a,...,z) as multiarrows GCD(a,...,z) <= {z,...,a}, then a(n) is the number of triangles whose composite ground is the integer partition with Heinz number n.
EXAMPLE
The a(36) = 11 ordered factorizations:
(2*2*3*3),
(2*2*9), (2*6*3), (6*2*3), (4*3*3),
(2*18), (18*2), (12*3), (4*9), (6*6),
(36).
The a(36) = 11 ordered multiset partitions:
{{1,1,2,2}}
{{1},{1,2,2}}
{{1,2,2},{1}}
{{1,1,2},{2}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1},{1},{2,2}}
{{1},{1,2},{2}}
{{1,2},{1},{2}}
{{1,1},{2},{2}}
{{1},{1},{2},{2}}
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[(Prepend[#1, d]&)/@Select[facs[n/d], Min@@#1>=d&], {d, Rest[Divisors[n]]}]];
gix[n_]:=GCD@@PrimePi/@If[n==1, {}, FactorInteger[n]][[All, 1]];
Table[Length[Select[Join@@Permutations/@facs[n], OrderedQ[gix/@#]&]], {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 07 2018
STATUS
approved