login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exponent of highest power of 5 dividing n. Or, 5-adic valuation of n.
66

%I #84 Jul 23 2022 14:53:53

%S 0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,2,0,0,0,0,1,0,0,0,0,

%T 1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,2,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,

%U 0,1,0,0,0,0,2,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,2,0,0,0,0,1

%N Exponent of highest power of 5 dividing n. Or, 5-adic valuation of n.

%C A027868 gives partial sums.

%C This is also the 5-adic valuation of Fibonacci(n). See Lengyel link. - _Michel Marcus_, May 06 2017

%H Reinhard Zumkeller, <a href="/A112765/b112765.txt">Table of n, a(n) for n = 1..10000</a>

%H Dario T. de Castro, <a href="http://math.colgate.edu/~integers/w61/w61.pdf">P-adic Order of Positive Integers via Binomial Coefficients</a>, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 22, Paper A61, 2022.

%H T. Lengyel, <a href="http://www.fq.math.ca/Scanned/33-3/lengyel.pdf">The order of the Fibonacci and Lucas numbers</a>, Fibonacci Quart. 33 (1995), no. 3, 234-239. See Lemma 1 p. 235.

%F Totally additive with a(p) = 1 if p = 5, 0 otherwise.

%F From _Hieronymus Fischer_, Jun 08 2012: (Start)

%F With m = floor(log_5(n)), frac(x) = x-floor(x):

%F a(n) = Sum_{j=1..m} (1 - ceiling(frac(n/5^j))).

%F a(n) = m + Sum_{j=1..m} (floor(-frac(n/5^j))).

%F a(n) = A027868(n) - A027868(n-1).

%F G.f.: Sum_{j>0} x^5^j/(1-x^5^j). (End)

%F a(5n) = A055457(n). - _R. J. Mathar_, Jul 17 2012

%F Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/4. - _Amiram Eldar_, Feb 14 2021

%F a(n) = 5*Sum_{j=1..floor(log(n)/log(5))} frac(binomial(n, 5^j)*5^(j-1)/n). - _Dario T. de Castro_, Jul 10 2022

%p A112765 := proc(n)

%p padic[ordp](n,5) ;

%p end proc: # _R. J. Mathar_, Jul 12 2016

%t a[n_] := IntegerExponent[n, 5]; Array[a, 105] (* _Jean-François Alcover_, Jan 25 2018 *)

%o (Haskell)

%o a112765 n = fives n 0 where

%o fives n e | r > 0 = e

%o | otherwise = fives n' (e + 1) where (n',r) = divMod n 5

%o -- _Reinhard Zumkeller_, Apr 08 2011

%o (PARI) A112765(n)=valuation(n,5); /* _Joerg Arndt_, Apr 08 2011 */

%o (Python)

%o def a(n):

%o k = 0

%o while n > 0 and n%5 == 0: n //= 5; k += 1

%o return k

%o print([a(n) for n in range(1, 106)]) # _Michael S. Branicky_, Aug 06 2021

%Y Cf. A007814, A007949, A112762, A022337, A122840, A027868, A054899, A122841, A160093, A160094, A196563, A196564.

%Y Cf. A343251.

%K nonn,easy

%O 1,25

%A _Reinhard Zumkeller_, Sep 18 2005