The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190508 n+[ns/r]+[nt/r]+[nu/r]; r=golden ratio, s=r^2, t=r^3, u=r^4. 4
 8, 18, 26, 36, 47, 55, 65, 73, 84, 94, 102, 112, 123, 131, 141, 149, 160, 170, 178, 188, 196, 207, 217, 225, 235, 246, 254, 264, 272, 283, 293, 301, 311, 322, 330, 340, 348, 358, 369, 377, 387, 395, 406, 416, 424, 434, 445, 453, 463, 471, 482, 492, 500, 510, 518, 529, 539, 547, 557, 568, 576, 586, 594, 605, 615, 623, 633, 644 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is one of four sequences that partition the positive integers.  In general, suppose that r, s, t, u are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1, {h/u: h>=1} are pairwise disjoint.  Let a(n) be the rank of n/r when all the numbers in the four sets are jointly ranked.  Define b(n), c(n), d(n) as the ranks of n/s, n/t, n/u, respectively.  It is easy to prove that a(n)=n+[ns/r]+[nt/r]+[nu/r], b(n)=n+[nr/s]+[nt/s]+[nu/s], c(n)=n+[nr/t]+[ns/t]+[nu/t], d(n)=n+[nr/u]+[ns/u]+[nt/u], where []=floor. Taking r=golden ratio, s=r^2, t=r^3, u=r^4 gives a=A190508, b=A190509, c=A054770, d=A190511. LINKS FORMULA A190508:  a(n)=n+[nr]+[nr^2]+[nr^3] A190509:  b(n)=[n/r]+n+[nr]+[nr^2] A054770:  c(n)=[n/r^2]+[n/r]+n+[nr] A190511:  d(n)=[n/r^3]+[n/r^2]+[n/r]+n MATHEMATICA r=GoldenRatio; s=r^2; t=r^3; u=r^4; a[n_] := n + Floor[n*s/r] + Floor[n*t/r]+Floor[n*u/r]; b[n_] := n + Floor[n*r/s] + Floor[n*t/s]+Floor[n*u/s]; c[n_] := n + Floor[n*r/t] + Floor[n*s/t]+Floor[n*u/t]; d[n_] := n + Floor[n*r/u] + Floor[n*s/u]+Floor[n*t/u]; Table[a[n], {n, 1, 120}]  (*A190508*) Table[b[n], {n, 1, 120}]  (*A190509*) Table[c[n], {n, 1, 120}]  (*A054770*) Table[d[n], {n, 1, 120}]  (*A190511*) CROSSREFS Cf. A190509, A054770, A190511 (the other three sequences in the partition of N). Sequence in context: A201056 A352081 A257404 * A298161 A195419 A110188 Adjacent sequences:  A190505 A190506 A190507 * A190509 A190510 A190511 KEYWORD nonn AUTHOR Clark Kimberling, May 11 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 03:53 EDT 2022. Contains 356184 sequences. (Running on oeis4.)