login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^n.
3

%I #40 Apr 04 2024 10:57:18

%S 1,1,4,28,272,3369,50816,903856,18522624,429746905,11135257600,

%T 318719062236,9987013488640,340037795872369,12500401969233920,

%U 493467700789897408,20819865970795610112,934939160745193002321,44523294861684890664960

%N a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^n.

%F G.f.: Sum_{k>=0} (k * x)^k / (1 - (k * x)^2).

%F Conjecture: a(n) = (1 - 2^n)*zeta(-n) - (2^n)*zeta(-n, n/2 + 1) for n > 0, where the bivariate zeta function is the Hurwitz zeta function. - _Velin Yanev_, Mar 25 2024

%F a(n) ~ n^n / (1 - exp(-2)). - _Vaclav Kotesovec_, Mar 25 2024

%t a[0] = 1; a[n_] := Sum[(n-2*k)^n, {k, 0, Floor[n/2]}]; Array[a, 20, 0] (* _Amiram Eldar_, Apr 16 2022 *)

%o (PARI) a(n) = sum(k=0, n\2, (n-2*k)^n);

%o (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-(k*x)^2)))

%Y Cf. A352981, A353013, A353016.

%K nonn,easy

%O 0,3

%A _Seiichi Manyama_, Apr 16 2022