OFFSET
0,2
COMMENTS
Row sums of triangle A131065. - Emeric Deutsch, Jun 20 2007
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..2000
Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
FORMULA
From Emeric Deutsch, Jun 20 2007: (Start)
a(n) = 6*2^n - 5*(n + 1).
G.f.: (1 - 2*x + 6*x^2)/((1-2*x)*(1-x)^2). (End)
E.g.f.: 6*exp(2*x) - 5*(1 + x)*exp(x). - G. C. Greubel, Mar 12 2020
a(n) = 2*a(n - 1) + 5*n - 5. - Kritsada Moomuang, Jul 03 2020
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - Wesley Ivan Hurt, Jul 10 2020
EXAMPLE
a(3) = 28 = sum of row 4 of triangle A131065: (1 + 13 + 13 + 1).
a(3) = 28 = (1, 3, 3, 1) dot (1, 1, 6, 6) = (1 + 3 + 18 + 6).
MAPLE
a := proc (n) options operator, arrow; 6*2^n-5*n-5 end proc: seq(a(n), n = 0 .. 30); # Emeric Deutsch, Jun 20 2007
MATHEMATICA
Table[6*2^n -5*(n+1), {n, 0, 30}] (* G. C. Greubel, Mar 12 2020 *)
PROG
(GAP) Print(List([0..30], n->6*2^n-5*n-5)); # Muniru A Asiru, Feb 21 2019
(Magma) [6*2^n -5*(n+1): n in [0..30]]; // G. C. Greubel, Mar 12 2020
(Sage) [6*2^n -5*(n+1) for n in (0..30)] # G. C. Greubel, Mar 12 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jun 13 2007
EXTENSIONS
Corrected and extended by Emeric Deutsch, Jun 20 2007
STATUS
approved